Abstract-We investigated roles for homocellular (endothelium or smooth muscle) and heterocellular (myoendothelial) conduction pathways along hamster cheek pouch arterioles in vivo (nϭ64; diameter, 33Ϯ1 m). Endothelium-dependent and -independent vasoactive agents were delivered from micropipettes (0.5 or 1 second pulse) onto an arteriole while observing diameter changes at defined distances along the vessel. Acetylcholine (ACh) produced maximal diameter (63Ϯ1 m) locally and vasodilation conducted rapidly (Ϸ10 m response at 2 mm, Ͻ1 second). Responses to bradykinin (BK) were similar, whereas sodium nitroprusside produced maximal dilation locally without conduction. KCl evoked biphasic conduction of vasoconstriction and vasodilation, whereas phenylephrine (PE) produced conducted vasoconstriction. Disrupting the integrity of endothelium as a conduction pathway using focal light-dye treatment (LDT) abolished conducted vasodilation to BK and to KCl but not to ACh. Disruption of smooth muscle integrity with LDT abolished conducted vasoconstriction with no effect on conducted vasodilation. After LDT of respective cell layers at sites 1 mm apart, vasodilation to ACh conducted past disrupted smooth muscle or disrupted endothelium, but not beyond both sites in series. The loss of conduction after selective LDT indicates a lack of effective myoendothelial coupling along the arteriolar wall. During NO synthase inhibition (L-NA, 100 mol/L), conducted vasodilation was abolished to BK and to KCl yet remained intact to ACh. However, after LDT of smooth muscle, L-NA inhibited conduction to ACh by 60%. Thus, conduction of vasodilation entails a wave of NO release along arteriolar endothelium that is masked when smooth muscle provides a parallel conduction pathway.
In the cheek pouch of anesthetized male hamsters, microiontophoresis of Ach (endothelium-dependent vasodilator) or phenylephrine (PE; smooth muscle-specific vasoconstrictor) onto an arteriole (resting diameter, 30-40 microm) evokes vasodilation or vasoconstriction (amplitude, 15-25 microm), respectively, that conducts along the arteriolar wall. In previous studies of conduction, endothelial and smooth muscle layers of the arteriolar wall have remained intact. We tested whether selective damage to endothelium or to smooth muscle would disrupt the initiation and conduction of vasodilation or vasoconstriction. Luminal (endothelial) or abluminal (smooth muscle) light-dye damage was produced within an arteriolar segment centered 500 microm upstream from the distal site of stimulation; conducted responses (amplitude, 10-15 microm) were observed at a proximal site located 1,000 microm upstream. Endothelial damage abolished local responses to ACh in the central segment without affecting those to PE. Nevertheless, ACh delivered at the distal site evoked vasodilation that conducted through the central segment and appeared unhindered at the proximal site. Smooth muscle damage inhibited responses to PE in the central segment and abolished the conduction of vasoconstriction but did not affect conducted vasodilation. We suggest that for cheek pouch arterioles in vivo, vasoconstriction to PE is initiated and conducted within the smooth muscle layer alone. In contrast, once vasodilation to ACh is initiated via intact endothelial cells, the signal is conducted along smooth muscle as well as endothelial cell layers.
We tested the hypothesis that cyclic changes in membrane potential (Em) underlie spontaneous vasomotion in cheek pouch arterioles of anesthetized hamsters. Diameter oscillations (∼3 min–1) were preceded (∼3 s) by oscillations in Em of smooth muscle cells (SMC) and endothelial cells (EC). Oscillations in Em were resolved into six phases: (1) a period (6 ± 2 s) at the most negative Em observed during vasomotion (–46 ± 2 mV) correlating (r = 0.87, p < 0.01) with time (8 ± 2 s) at the largest diameter observed during vasomotion (41 ± 2 µm); (2) a slow depolarization (1.8 ± 0.2 mV s–1) with no diameter change; (3) a fast (9.1 ± 0.8 mV s–1) depolarization (to –28 ± 2 mV) and constriction; (4) a transient partial repolarization (3–4 mV); (5) a sustained (5 ± 1 s) depolarization (–28 ± 2 mV) correlating (r = 0.78, p < 0.01) with time (3 ± 1 s) at the smallest diameter (27 ± 2 µm) during vasomotion; (6) a slow repolarization (2.5 ± 0.2 mV s–1) and relaxation. The absolute change in Em correlated (r = 0.60, p < 0.01) with the most negative Em. Sodium nitroprusside or nifedipine caused sustained hyperpolarization and dilation, whereas tetraethylammonium or elevated PO2 caused sustained depolarization and constriction. We suggest that vasomotion in vivo reflects spontaneous, cyclic changes in Em of SMC and EC corresponding with cation fluxes across plasma membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.