Este trabalho apresenta o desenvolvimento de um classificador explicável de imagens, treinado para a tarefa de determinar se uma célula foi infectada por malária. O classificador consiste em uma rede neural residual, com acurácia de classificação de 96%, treinada com o dataset de Malária do National Health Institute. Técnicas de Inteligência Artificial Explicável foram aplicadas para tornar as classificações mais interpretáveis. Estas explicações são geradas usando duas metodologias: Local Interpretable Model Agnostic Explanations (LIME) e SquareGrid. As explicações fornecem perspectivas novas e importantes para os padrões de decisão de modelos como este, de alto desempenho para tarefas médicas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.