This paper explores acoustical (or time-dependent) radiosity--a geometrical-acoustics sound-field prediction method that assumes diffuse surface reflection. The literature of acoustical radiosity is briefly reviewed and the advantages and disadvantages of the method are discussed. A discrete form of the integral equation that results from meshing the enclosure boundaries into patches is presented and used in a discrete-time algorithm. Furthermore, an averaging technique is used to reduce computational requirements. To generalize to nonrectangular rooms, a spherical-triangle method is proposed as a means of evaluating the integrals over solid angles that appear in the discrete form of the integral equation. The evaluation of form factors, which also appear in the numerical solution, is discussed for rectangular and nonrectangular rooms. This algorithm and associated methods are validated by comparison of the steady-state predictions for a spherical enclosure to analytical solutions.
This paper explores acoustical (or time-dependent) radiosity using predictions made in four cubic enclosures. The methods and algorithms used are those presented in a previous paper by the same authors [Nosal, Hodgson, and Ashdown, J. Acoust. Soc. Am. 116(2), 970-980 (2004)]. First, the algorithm, methods, and conditions for convergence are investigated by comparison of numerous predictions for the four cubic enclosures. Here, variables and parameters used in the predictions are varied to explore the effect of absorption distribution, the necessary conditions for convergence of the numerical solution to the analytical solution, form-factor prediction methods, and the computational requirements. The predictions are also used to investigate the effect of absorption distribution on sound fields in cubic enclosures with diffusely reflecting boundaries. Acoustical radiosity is then compared to predictions made in the four enclosures by a ray-tracing model that can account for diffuse reflection. Comparisons are made of echograms, room-acoustical parameters, and discretized echograms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.