We lay out a comprehensive physics case for a future high-energy muon collider, exploring a range of collision energies (from 1 to 100 TeV) and luminosities. We highlight the advantages of such a collider over proposed alternatives. We show how one can leverage both the point-like nature of the muons themselves as well as the cloud of electroweak radiation that surrounds the beam to blur the dichotomy between energy and precision in the search for new physics. The physics case is buttressed by a range of studies with applications to electroweak symmetry breaking, dark matter, and the naturalness of the weak scale. Furthermore, we make sharp connections with complementary experiments that are probing new physics effects using electric dipole moments, flavor violation, and gravitational waves. An extensive appendix provides cross section predictions as a function of the center-of-mass energy for many canonical simplified models.
We initiate the study of a new class of beyond the Standard Model states that we call “Loryons.” They have the defining characteristic of being non-decoupling, in the sense that their physical mass is dominated by a contribution from the vacuum expectation value of the Higgs boson. The stakes are high: the discovery of a Loryon would tell us that electroweak symmetry must be non-linearly realized in the effective field theory of the Standard Model. Loryons have their masses bounded from above by perturbative unitarity considerations and thus define a finite parameter space for exploration. After providing a complete catalog of Loryon representations under mild assumptions, we turn to examining the constraints on the parameter space from Higgs couplings measurements, precision electroweak tests, and direct collider searches. We show that most fermionic candidates are already ruled out (with some notable exceptions), while much of the scalar Loryon parameter space is still wide open for discovery.
We revisit the effective field theory of the two Higgs doublet model at tree level. The introduction of a novel basis in the UV theory allows us to derive matching coefficients in the effective description that resum important contributions from the Higgs vacuum expectation value. The new basis typically provides a significantly better approximation of the full theory prediction than the traditional approach that utilizes the Higgs basis, particularly for alignment away from the decoupling limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.