BackgroundThe case has been made for more and better theory-informed process evaluations within trials in an effort to facilitate insightful understandings of how interventions work. In this paper, we provide an explanation of implementation processes from one of the first national implementation research randomized controlled trials with embedded process evaluation conducted within acute care, and a proposed extension to the Promoting Action on Research Implementation in Health Services (PARIHS) framework.MethodsThe PARIHS framework was prospectively applied to guide decisions about intervention design, data collection, and analysis processes in a trial focussed on reducing peri-operative fasting times. In order to capture a holistic picture of implementation processes, the same data were collected across 19 participating hospitals irrespective of allocation to intervention. This paper reports on findings from data collected from a purposive sample of 151 staff and patients pre- and post-intervention. Data were analysed using content analysis within, and then across data sets.ResultsA robust and uncontested evidence base was a necessary, but not sufficient condition for practice change, in that individual staff and patient responses such as caution influenced decision making. The implementation context was challenging, in which individuals and teams were bounded by professional issues, communication challenges, power and a lack of clarity for the authority and responsibility for practice change. Progress was made in sites where processes were aligned with existing initiatives. Additionally, facilitators reported engaging in many intervention implementation activities, some of which result in practice changes, but not significant improvements to outcomes.ConclusionsThis study provided an opportunity for reflection on the comprehensiveness of the PARIHS framework. Consistent with the underlying tenant of PARIHS, a multi-faceted and dynamic story of implementation was evident. However, the prominent role that individuals played as part of the interaction between evidence and context is not currently explicit within the framework. We propose that successful implementation of evidence into practice is a planned facilitated process involving an interplay between individuals, evidence, and context to promote evidence-informed practice. This proposal will enhance the potential of the PARIHS framework for explanation, and ensure theoretical development both informs and responds to the evidence base for implementation.Trial registrationISRCTN18046709 - Peri-operative Implementation Study Evaluation (PoISE).
In this paper, we present results from a study of prehensile human hand use during the daily work activities of four subjects: two housekeepers and two machinists. Subjects wore a head-mounted camera that recorded their hand usage during their daily work activities in their typical place of work. For each subject, 7.45 hours of video was analyzed, recording the type of grasp being used and its duration. From this data, we extracted overall grasp frequency, duration distributions for each grasp, and common transitions between grasps. The results show that for 80 percent of the study duration the housekeepers used just five grasps and the machinists used 10. The grasping patterns for the different subjects were compared, and the overall top 10 grasps are discussed in detail. The results of this study not only lend insight into how people use their hands during daily tasks, but can also inform the design of effective robotic and prosthetic hands.
This paper is the first of a two-part series analyzing human grasping behavior during a wide range of unstructured tasks. The results help clarify overall characteristics of human hand to inform many domains, such as the design of robotic manipulators, targeting rehabilitation toward important hand functionality, and designing haptic devices for use by the hand. It investigates the properties of objects grasped by two housekeepers and two machinists during the course of almost 10,000 grasp instances and correlates the grasp types used to the properties of the object. We establish an object classification that assigns each object properties from a set of seven classes, including mass, shape and size of the grasp location, grasped dimension, rigidity, and roundness. The results showed that 55 percent of grasped objects had at least one dimension larger than 15 cm, suggesting that more than half of objects cannot physically be grasped using their largest axis. Ninety-two percent of objects had a mass of 500 g or less, implying that a high payload capacity may be unnecessary to accomplish a large subset of human grasping behavior. In terms of grasps, 96 percent of grasp locations were 7 cm or less in width, which can help to define requirements for hand rehabilitation and defines a reasonable grasp aperture size for a robotic hand. Subjects grasped the smallest overall major dimension of the object in 94 percent of the instances. This suggests that grasping the smallest axis of an object could be a reliable default behavior to implement in grasp planners.
The WaPEF is the first patient experiences framework with an explicit link to an underpinning patient evidence base, linking themes and sub-themes with specific references. The WaPEF informed the structure and content of the NICE Patient Experiences Guidance. The guidance, published in February 2012, will form a key part of the NHS Outcomes Framework in the UK for the future evaluation of health and social care. The proposed framework could be adapted to other country contexts and settings.
This work contributes to the development of a common framework for the discussion and analysis of dexterous manipulation across the human and robotic domains. An overview of previous work is first provided along with an analysis of the tradeoffs between arm and hand dexterity. A hand-centric and motion-centric manipulation classification is then presented and applied in four different ways. It is first discussed how the taxonomy can be used to identify a manipulation strategy. Then, applications for robot hand analysis and engineering design are explained. Finally, the classification is applied to three activities of daily living (ADLs) to distinguish the patterns of dexterous manipulation involved in each task. The same analysis method could be used to predict problem ADLs for various impairments or to produce a representative benchmark set of ADL tasks. Overall, the classification scheme proposed creates a descriptive framework that can be used to effectively describe hand movements during manipulation in a variety of contexts and might be combined with existing object centric or other taxonomies to provide a complete description of a specific manipulation task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.