Transcriptional silencing by CpG island methylation is a prevalent mechanism of tumor-suppressor gene suppression in cancers. Genetic experiments have defined the importance of the DNA methyltransferase Dnmt1 for the maintenance of methylation in mouse cells and its role in neoplasia. In human bladder cancer cells, selective depletion of DNMT1 with antisense inhibitors has been shown to induce demethylation and reactivation of the silenced tumor-suppressor gene CDKN2A. In contrast, targeted disruption of DNMT1 alleles in HCT116 human colon cancer cells produced clones that retained CpG island methylation and associated tumor-suppressor gene silencing, whereas HCT116 clones with inactivation of both DNMT1 and DNMT3B showed much lower levels of DNA methylation, suggesting that the two enzymes are highly cooperative. We used a combination of genetic (antisense and siRNA) and pharmacologic (5-aza-2'-deoxycytidine) inhibitors of DNA methyl transferases to study the contribution of the DNMT isotypes to cancer-cell methylation. Selective depletion of DNMT1 using either antisense or siRNA resulted in lower cellular maintenance methyltransferase activity, global and gene-specific demethylation and re-expression of tumor-suppressor genes in human cancer cells. Specific depletion of DNMT1 but not DNMT3A or DNMT3B markedly potentiated the ability of 5-aza-2'-deoxycytidine to reactivate silenced tumor-suppressor genes, indicating that inhibition of DNMT1 function is the principal means by which 5-aza-2'-deoxycytidine reactivates genes. These results indicate that DNMT1 is necessary and sufficient to maintain global methylation and aberrant CpG island methylation in human cancer cells.
Recent studies indicate that extracellular vesicles are an important source material for many clinical applications, including minimally-invasive disease diagnosis. However, challenges for rapid and simple extracellular vesicle collection have hindered their application. We have developed and validated a novel class of peptides (which we named venceremin, or Vn) that exhibit nucleotide-independent specific affinity for canonical heat shock proteins. The Vn peptides were validated to specifically and efficiently capture HSP-containing extracellular vesicles from cell culture growth media, plasma, and urine by electron microscopy, atomic force microscopy, sequencing of nucleic acid cargo, proteomic profiling, immunoblotting, and nanoparticle tracking analysis. All of these analyses confirmed the material captured by the Vn peptides was comparable to those purified by the standard ultracentrifugation method. We show that the Vn peptides are a useful tool for the rapid isolation of extracellular vesicles using standard laboratory equipment. Moreover, the Vn peptides are adaptable to diverse platforms and therefore represent an excellent solution to the challenge of extracellular vesicle isolation for research and clinical applications.
Abnormal methylation and associated silencing of tumor suppressor genes is a common feature of many types of cancers. The observation of persistent methylation in human cancer cells lacking the maintenance methyltransferase DNMT1 suggests the involvement of other DNA methyltransferases in gene silencing in cancer. To test this hypothesis, we have evaluated methylation and gene expression in cancer cells specifically depleted of DNMT3A or DNMT3B, de novo methyltransferases that are expressed in adult tissues. Here we have shown that depletion of DNMT3B, but not DNMT3A, induced apoptosis of human cancer cells but not normal cells. DNMT3B depletion reactivated methylation-silenced gene expression but did not induce global or juxtacentromeric satellite demethylation as did specific depletion of DNMT1. Furthermore, the effect of DNMT3B depletion was rescued by exogenous expression of either of the splice variants DNMT3B2 or DNMT3B3 but not DNMT1. These results indicate that DNMT3B has significant site selectivity that is distinct from DNMT1, regulates aberrant gene silencing, and is essential for cancer cell survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.