De novo protein design has succeeded in generating a large variety of globular proteins, but the construction of protein scaffolds with cavities that could accommodate large signaling molecules, cofactors, and substrates remains an outstanding challenge. The long, often flexible loops that form such cavities in many natural proteins are difficult to precisely program and thus challenging for computational protein design. Here we describe an alternative approach to this problem. We fused two stable proteins with C2 symmetry—a de novo designed dimeric ferredoxin fold and a de novo designed TIM barrel—such that their symmetry axes are aligned to create scaffolds with large cavities that can serve as binding pockets or enzymatic reaction chambers. The crystal structures of two such designs confirm the presence of a 420 cubic Ångström chamber defined by the top of the designed TIM barrel and the bottom of the ferredoxin dimer. We functionalized the scaffold by installing a metal-binding site consisting of four glutamate residues close to the symmetry axis. The protein binds lanthanide ions with very high affinity as demonstrated by tryptophan-enhanced terbium luminescence. This approach can be extended to other metals and cofactors, making this scaffold a modular platform for the design of binding proteins and biocatalysts.
We designed a protein biosensor that uses thermodynamic coupling for sensitive and rapid detection of neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in serum. The biosensor is a switchable, caged luciferase–receptor-binding domain (RBD) construct that detects serum-antibody interference with the binding of virus RBD to angiotensin-converting enzyme 2 (ACE-2) as a proxy for neutralization. Our coupling approach does not require target modification and can better distinguish sample-to-sample differences in analyte binding affinity and abundance than traditional competition-based assays.
Undergraduate research experiences can improve student
success
in graduate education and STEM careers. During the COVID-19 pandemic,
undergraduate researchers at our institution and many others lost
their work–study research positions due to interruption of
in-person research activities. This imposed a financial burden on
the students and eliminated an important learning opportunity. To
address these challenges, we created a paid, fully remote, cohort-based
research curriculum in computational protein design. Our curriculum
used existing protein design methods as a platform to first educate
and train undergraduate students and then to test research hypotheses.
In the first phase, students learned computational methods to assess
the stability of designed protein assemblies. In the second phase,
students used a larger data set to identify factors that could improve
the accuracy of current protein design algorithms. This cohort-based
program created valuable new research opportunities for undergraduates
at our institute and enhanced the undergraduates’ feeling of
connection with the lab. Students learned transferable and useful
skills such as literature review, programming basics, data analysis,
hypothesis testing, and scientific communication. Our program provides
a model of structured computational research training opportunities
for undergraduate researchers in any field for organizations looking
to expand educational access.
With global vaccination efforts against SARS-CoV-2 underway, there is a need for rapid quantification methods for neutralizing antibodies elicited by vaccination and characterization of their strain dependence. Here, we describe a designed protein biosensor that enables sensitive and rapid detection of neutralizing antibodies against wild type and variant SARS-CoV-2 in serum samples. More generally, our thermodynamic coupling approach can better distinguish sample to sample differences in analyte binding affinity and abundance than traditional competition based assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.