We aimed to evaluate perioperative outcomes in patients undergoing pancreaticoduodenectomy with or without a cardiac output goal directed therapy (GDT) algorithm. We conducted a multicentre randomised controlled trial in four high volume hepatobiliary-pancreatic surgery centres. We evaluated whether the additional impact of a intraoperative fluid optimisation algorithm would influence the amount of fluid delivered, reduce fluid related complications, and improve length of hospital stay. Fifty-two consecutive adult patients were recruited. The median (IQR) duration of surgery was 8.6 hours (7.1:9.6) in the GDT group vs. 7.8 hours (6.8:9.0) in the usual care group (p = 0.2). Intraoperative fluid balance was 1005mL (475:1873) in the GDT group vs. 3300mL (2474:3874) in the usual care group (p<0.0001). Total volume of fluid administered intraoperatively was also lower in the GDT group: 2050mL (1313:2700) vs. 4088mL (3400:4525), p<0.0001 and vasoactive medications were used more frequently. There were no significant differences in proportions of patients experiencing overall complications (p = 0.179); however, fewer complications occurred in the GDT group: 44 vs. 92 (Incidence Rate Ratio: 0.41; 95%CI 0.24 to 0.69, p = 0.001). Median (IQR) length of hospital stay was 9.5 days (IQR: 7.0, 14.3) in the GDT vs. 12.5 days in the usual care group (IQR: 9.0, 22.3) for an Incidence Rate Ratio 0.64 (95% CI 0.48 to 0.85, p = 0.002). In conclusion, using a surgery-specific, patient-specific goal directed restrictive fluid therapy algorithm in this cohort of patients, can justify using enough fluid without causing oedema, yet as little fluid as possible without causing hypovolaemia i.e. “precision” fluid therapy. Our findings support the use of a perioperative haemodynamic optimization plan that prioritizes preservation of cardiac output and organ perfusion pressure by judicious use of fluid therapy, rational use of vasoactive drugs and timely application of inotropic drugs. They also suggest the need for further larger studies to confirm its findings.
SummaryThree-dimensional printing has rapidly become an easily accessible, innovative and versatile technology, with a vast range of applications across a wide range of industries. There has been a recent emergence in the scientific literature relating to its potential application across a multitude of fields within medicine and surgery; however, its use within anaesthesia has yet to be formally explored. We undertook a systematic review using MEDLINE and EMBASE databases of three-dimensional printing in anaesthesia. We identified eight relevant articles. Due to the paucity of studies, we also completed a narrative review of the applications of three-dimensional printing pertinent to anaesthetic practice that our department are currently exploring, and suggest potential future uses for this technology relevant to our speciality.
Background: Rapid elimination of nitrous oxide from the lungs at the end of inhalational anesthesia dilutes alveolar oxygen, producing "diffusion hypoxia." A similar dilutional effect on accompanying volatile anesthetic agent has not been evaluated and may impact the speed of emergence. Methods: Twenty patients undergoing surgery were randomly assigned to receive an anesthetic maintenance gas mixture of sevoflurane adjusted to bispectral index, in airoxygen (control group) versus a 2:1 mixture of nitrous oxideoxygen (nitrous oxide group). After surgery, baseline arterial and tidal gas samples were taken. Patients were ventilated with oxygen, and arterial and tidal gas sampling was repeated at 2 and 5 min. Arterial sampling was repeated 30 min after surgery. Sevoflurane partial pressure was measured in blood by the double headspace equilibration technique and in tidal gas using a calibrated infrared gas analyzer. Time to eye opening and time extubation were recorded. The primary endpoint was the reduction in sevoflurane partial pressures in blood at 2 and 5 min. Results: Relative to baseline, arterial sevoflurane partial pressure was 39% higher at 5 min in the control group (P Ͻ 0.04) versus the nitrous oxide group. At 30 min the difference was not statistically significant. Time to eye opening (8.7 vs. 10.1 min) and time to extubation (11.0 vs.13.2 min) were shorter in the nitrous oxide group versus the control group (P Ͻ 0.04). Conclusions: Elimination of nitrous oxide at the end of anesthesia produces a clinically significant acceleration in the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.