From both a fundamental and a clinical point of view, it is necessary to know the distribution of the eye's aberrations in the normal population and to be able to describe them as efficiently as possible. We used a modified Hartmann-Shack wave-front sensor to measure the monochromatic wave aberration of both eyes for 109 normal human subjects across a 5.7-mm pupil. We analyzed the distribution of the eye's aberrations in the population and found that most Zernike modes are relatively uncorrelated with each other across the population. A principal components analysis was applied to our wave-aberration measurements with the resulting principal components providing only a slightly more compact description of the population data than Zernike modes. This indicates that Zernike modes are efficient basis functions for describing the eye's wave aberration. Even though there appears to be a random variation in the eye's aberrations from subject to subject, many aberrations in the left eye were found to be significantly correlated with their counterparts in the right eye.
An ideal correcting method, such as a customized contact lens, laser refractive surgery, or adaptive optics, that corrects higher-order aberrations as well as defocus and astigmatism could improve vision. The benefit achieved with this ideal method will be limited by decentration. To estimate the significance of this potential limitation we studied the effect on image quality expected when an ideal correcting method translates or rotates with respect to the eye's pupil. Actual wave aberrations were obtained from ten human eyes for a 7.3-mm pupil with a Shack-Hartmann sensor. We computed the residual aberrations that appear as a result of translation or rotation of an otherwise ideal correction. The model is valid for adaptive optics, contact lenses, and phase plates, but it constitutes only a first approximation to the laser refractive surgery case where tissue removal occurs. Calculations suggest that the typical decentrations will reduce only slightly the optical benefits expected from an ideal correcting method. For typical decentrations the ideal correcting method offers a benefit in modulation 2-4 times higher (1.5-2 times in white light) than with a standard correction of defocus and astigmatism. We obtained analytical expressions that show the impact of translation and rotation on individual Zernike terms. These calculations also reveal which aberrations are most beneficial to correct. We provided practical rules to implement a selective correction depending on the amount of decentration. An experimental study was performed with an aberrated artificial eye corrected with an adaptive optics system, validating the theoretical predictions. The results in a keratoconic subject, also corrected with adaptive optics, showed that important benefits are obtained despite decentrations in highly aberrated eyes.
Higher-order aberration correction in abnormal eyes can result in significant vision improvement, especially in eyes with abnormal corneas. Customized optics such as phase plates and customized contact lenses are one of the most practical, nonsurgical ways to correct these ocular higher-order aberrations. We demonstrate the feasibility of correcting higher-order aberrations and improving visual performance with customized soft contact lenses in keratoconic eyes while compensating for the static decentration and rotation of the lens. A reduction of higher-order aberrations by a factor of 3 on average was obtained in these eyes. The higher-order aberration correction resulted in an average improvement of 2.1 lines in visual acuity over the conventional correction of defocus and astigmatism alone.
This nontoric eye model, which separates the effects of differences in ablation efficiency and biological corneal surface change quantitatively, explains how spherical aberration is induced after myopic and hyperopic laser refractive surgery. With the corneal topographic data, this model can be incorporated into the ablation algorithm to decrease induced spherical aberrations, improving the outcomes of conventional and customized treatments.
• PURPOSE: To study the optical changes induced by the microkeratome cut, the subsequent laser ablation, and the biomechanical healing response of the cornea in normal laser in situ keratomileusis (LASIK) eyes.• DESIGN: Prospective randomized clinical trial.• METHODS: A Hansatome microkeratome was used to cut a corneal flap in one eye (study eye) of 17 normal myopic patients and a subsequent laser ablation was performed 2 months after this initial microkeratome incision. Control eyes received conventional LASIK treatments at the latter time point. The wave aberration of both the study and contralateral control eyes were measured over a 6-mm pupil with a Shack-Hartmann wavefront sensor for all preoperative, postflap cut, and postablation visits.• RESULTS: The eye's higher order aberrations had a small, but significant increase (P ؍ .03) of approximately 30% 2 months after cutting a flap. No systematic changes were observed in nearly all Zernike coefficients from their preoperative levels at 2 months postflap cut. A significant difference between the study and control eyes was observed for one trefoil mode, Z 3 3 (P ؍ .04).• CONCLUSIONS: There was a wide variation in the response of individual Zernike modes across patients after cutting a flap. The majority of spherical aberration induced by the LASIK procedure seems to be due to the laser ablation and not the microkeratome cut. In addition, the total and higher order root mean square of wavefront errors were nearly identical for both the study and control eyes 3-months after the laser ablation, indicating that a procedure in which the incision and the ablation are separated in time to better control aberrations does not compromise the outcome of a conventional LASIK treatment. ( have been encouraging, further refinements of wavefront-guided laser in situ keratomileusis (LASIK) procedures are needed to obtain an aberration-free ablative correction. 1-4 It has been well established that conventional photorefractive keratectomy (PRK) and LASIK procedures induce higher order aberrations, including increased amounts of spherical aberration, despite their accurate correction of spherocylindrical errors. [5][6][7][8][9][10] To date, little evidence has been presented to determine the origins of these induced higher order aberrations. Consequently, not much is known about the importance or relative contribution of the two separate effects of creating a microkeratome flap and performing a subsequent laser ablation on the overall optical quality of an eye receiving a LASIK treatment. Developing a firm understanding of the aberrations induced by these two processes is crucial for achieving an optimal, customized correction of the eye's higher order aberrations with laser refractive surgery.Studies have been conducted to investigate structural changes in corneal shape due to the laser ablation in refractive surgery procedures. Howland and coworkers 11 found that changes made in the midperipheral and peripheral cornea could create biomechanical changes in the central corn...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.