The growing awareness of the environmental significance of fine-grained sediment fluxes through catchment systems continues to underscore the need for reliable information on the principal sources of this material. Source estimates are difficult to obtain using traditional monitoring techniques, but sediment source fingerprinting or tracing procedures, have emerged as a potentially valuable alternative. Despite the rapidly increasing numbers of studies reporting the use of sediment source fingerprinting, several key challenges and uncertainties continue to hamper consensus among the international scientific community on key components of the existing methodological procedures. Accordingly, this contribution reviews and presents recent developments for several key aspects of fingerprinting, namely: sediment source classification, catchment source and target sediment sampling, tracer selection, grain size issues, tracer conservatism, source apportionment modelling, and assessment of source predictions using artificial mixtures. Finally, a decision-tree representing the current state of knowledge is presented, to guide end-users in applying the fingerprinting approach.
This paper reviews the major sources and transport characteristics of heavy metals in the hydrological cycle. It is demonstrated that heavy metal releases to the environment have changed from 19th and early 20th century production-related activities to consumption-oriented factors in more recent times. The relative roles of particle size, sorption and desorption processes, partitioning and the chemical speciation of heavy metals on fine sediments are identified to understand the likely fate of heavy metals released into fluvial systems. It is argued that the spatial and temporal distribution of heavy metals in the river corridor depends not only on an understanding of metal solubility and speciation, but also on an understanding of sediment dynamics which control, for example, floodplain alluviation and the accumulation of metals in the bottom sediments of contaminated rivers, lakes and reservoirs. Existing long-and short-term records are examined to identify the current state of knowledge about the factors which affect heavy metal releases into aquatic environments. With limited exceptions, it is shown that few long-term studies of trends in heavy metal transport are available although, for some major rivers, limited data on trends in metal concentration exists. Palaeolimnological reconstruction techniques, based on an analysis of lake and reservoir sediments, are identified as a possible means of supplementing monitored records of heavy metal transport. Although numerous studies have suggested that trends in atmospheric contamination, mining and urbanization may be identified in the bottom sediment record, other research has shown that the radionuclide-based chronology and the heavy metal distribution within the sediment are more likely to be a function of post-depositional remobilization than the history of metal loading to the basin. Despite these limitations, it is shown that the incorporation of reservoir bottom sediment analysis into a heavy metal research programme, based in river corridors of Midland England, provides an opportunity to identify and quantify the relative contribution of point and non-point contributions to the heavy metal budget and to relate trends in metal contamination to specific periods of catchment disturbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.