Background and Purpose-New strategies like motor imagery based brain-computer interfaces, which use brain signals such as event-related desynchronization (ERD) or event-related synchronization (ERS) for motor rehabilitation after a stroke, are undergoing investigation. However, little is known about the relationship between ERD and ERS patterns and the degree of stroke impairment. The aim of this work was to clarify this relationship. Methods-EEG during motor imagery and execution were measured in 29 patients with first-ever monolateral stroke causing any degree of motor deficit in the upper limb. The strength and laterality of the ERD or ERS patterns were correlated with the scores of the European Stroke Scale, the Medical Research Council, and the Modified Ashworth Scale. Results-Mean age of the patients was 58Ϯ15 years; mean time from the incident was 4Ϯ4 months. Stroke lesions were cortical (nϭ8), subcortical (nϭ11), or mixed (nϭ10), attributable to either an ischemic event (nϭ26) or a hemorrhage (nϭ3), affecting the right (nϭ16) or left (nϭ13) hemisphere. Higher impairment was related to stronger ERD in the unaffected hemisphere and higher spasticity was related to stronger ERD in the affected hemisphere. Both were related to a relatively stronger ERS in the affected hemisphere.
Conclusion-The
A fully automated and online artifact removal method for the electroencephalogram (EEG) is developed for use in brain-computer interfacing (BCI). The method (FORCe) is based upon a novel combination of wavelet decomposition, independent component analysis, and thresholding. FORCe is able to operate on a small channel set during online EEG acquisition and does not require additional signals (e.g., electrooculogram signals). Evaluation of FORCe is performed offline on EEG recorded from 13 BCI particpants with cerebral palsy (CP) and online with three healthy participants. The method outperforms the state-of the-art automated artifact removal methods Lagged Auto-Mutual Information Clustering (LAMIC) and Fully Automated Statistical Thresholding for EEG artifact Rejection (FASTER), and is able to remove a wide range of artifact types including blink, electromyogram (EMG), and electrooculogram (EOG) artifacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.