A large body of literature documents the adverse effects of maternal depression on the functioning and development of offspring. Although investigators have identified factors associated with risk for abnormal development and psychopathology in the children, little attention has been paid to the mechanisms explaining the transmission of risk from the mothers to the children. Moreover, no existing model both guides understanding of the various processes' interrelatedness and considers the role of development in explicating the manifestation of risk in the children. This article proposes a developmentally sensitive, integrative model for understanding children's risk in relation to maternal depression. Four mechanisms through which risk might be transmitted are evaluated: (a) heritability of depression; (b) innate dysfunctional neuroregulatory mechanisms; (c) exposure to negative maternal cognitions, behaviors, and affect; and (d) the stressful context of the children's lives. Three factors that might moderate this risk are considered: (a) the father's health and involvement with the child, (b) the course and timing of the mother's depression, and (c) characteristics of the child. Relevant issues are discussed, and promising directions for future research are suggested.
Cognitive theories of depression posit that people's thoughts, inferences, attitudes, and interpretations, and the way in which they attend to and recall information, can increase their risk for depression. Three mechanisms have been implicated in the relation between biased cognitive processing and the dysregulation of emotion in depression: inhibitory processes and deficits in working memory, ruminative responses to negative mood states and negative life events, and the inability to use positive and rewarding stimuli to regulate negative mood. In this review, we present a contemporary characterization of depressive cognition and discuss how different cognitive processes are related not only to each other, but also to emotion dysregulation, the hallmark feature of depression. We conclude that depression is characterized by increased elaboration of negative information, by difficulties disengaging from negative material, and by deficits in cognitive control when processing negative information. We discuss treatment implications of these conclusions and argue that the study of cognitive aspects of depression must be broadened by investigating neural and genetic factors that are related to cognitive dysfunction in this disorder. Such integrative investigations should help us gain a more comprehensive understanding of how cognitive and biological factors interact to affect the onset, maintenance, and course of depression.
Three potential sources of error in retrospective reports of childhood experiences are documented: low reliability and validity of autobiographical memory in general, the presence of general memory impairment associated with psychopathology, and the presence of specific mood-congruent memory biases associated with psychopathology. The evidence reviewed suggests that claims concerning the general unreliability of retrospective reports are exaggerated and that there is little reason to link psychiatric status with less reliable or less valid recall of early experiences. Nevertheless, it is clear that steps must be taken to overcome the limitations of retrospective reports and enhance their reliability.
The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen's d effect sizes: −0.10 to −0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: −0.26 to −0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life.
The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical characteristics and brain morphology. To address this, we meta-analyzed three-dimensional brain magnetic resonance imaging data from 1728 MDD patients and 7199 controls from 15 research samples worldwide, to identify subcortical brain volumes that robustly discriminate MDD patients from healthy controls. Relative to controls, patients had significantly lower hippocampal volumes (Cohen's d=−0.14, % difference=−1.24). This effect was driven by patients with recurrent MDD (Cohen's d=−0.17, % difference=−1.44), and we detected no differences between first episode patients and controls. Age of onset ⩽21 was associated with a smaller hippocampus (Cohen's d=−0.20, % difference=−1.85) and a trend toward smaller amygdala (Cohen's d=−0.11, % difference=−1.23) and larger lateral ventricles (Cohen's d=0.12, % difference=5.11). Symptom severity at study inclusion was not associated with any regional brain volumes. Sample characteristics such as mean age, proportion of antidepressant users and proportion of remitted patients, and methodological characteristics did not significantly moderate alterations in brain volumes in MDD. Samples with a higher proportion of antipsychotic medication users showed larger caudate volumes in MDD patients compared with controls. This currently largest worldwide effort to identify subcortical brain alterations showed robust smaller hippocampal volumes in MDD patients, moderated by age of onset and first episode versus recurrent episode status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.