Glycoside hydrolases cleave the glycosidic linkage between two carbohydrate moieties. They are among the most efficient enzymes currently known. β-Xylosidases from glycoside hydrolase family 43 hydrolyze the nonreducing ends of xylooligomers using an inverting mechanism. Although the general mechanism and catalytic amino acid residues of β-xylosidases are known, the nature of the reaction's transition state and the conformations adopted by the glycon xylopyranosyl ring along the reaction pathway are still elusive. In this work, the xylobiose hydrolysis reaction catalyzed by XynB3, a β-xylosidase produced by Geobacillus stearothermophilus T-6, was explicitly modeled using first-principles quantum mechanics/molecular mechanics Car-Parrinello metadynamics. We present the reaction's free energy surface and its previously undetermined reaction pathway. The simulations also show that the glycon xylopyranosyl ring proceeds through a (2,5)B-type transition state with significant oxacarbenium ion character.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.