Economic models of climate change often take the problem seriously, but paradoxically conclude that the optimal policy is to do almost nothing about it. We explore this paradox as seen in the widely used DICE model. Three aspects of that model, involving the discount rate, the assumed benefits of moderate warming, and the treatment of the latest climate science, are sufficient to explain the timidity of the model's optimal policy recommendation. With modifications to those three points, DICE shows that the optimal policy is a much higher and rapidly rising marginal carbon price; that higher carbon price has a greater effect on physical measures of climate impacts. Our modifications exhibit nonlinear interactions; at least at low discount rates, there is synergy between individual changes to the model. At low discount rates, the inherent uncertainty about future damages looms larger in the analysis, rendering long-run economic modeling less useful. Our analysis highlights the sensitivity of the model to three debatable assumptions; it does not, and could not, lead to a more reliably "optimal" cost of carbon. Cost-effectiveness analysis, focusing on the generally shorter-term cost side of the problem, reduces the economic paradoxes of the long run, and may make a greater contribution than economic optimization modeling.
Economic models of climate change often take the problem seriously, but paradoxically conclude that the optimal policy is to do almost nothing about it. We explore this paradox as seen in the widely used DICE model. Three aspects of that model, involving the discount rate, the assumed benefits of moderate warming, and the treatment of the latest climate science, are sufficient to explain the timidity of the model's optimal policy recommendation. With modifications to those three points, DICE shows that the optimal policy is a much higher and rapidly rising marginal carbon price; that higher carbon price has a greater effect on physical measures of climate impacts. Our modifications exhibit nonlinear interactions; at least at low discount rates, there is synergy between individual changes to the model. At low discount rates, the inherent uncertainty about future damages looms larger in the analysis, rendering long-run economic modeling less useful.Our analysis highlights the sensitivity of the model to three debatable assumptions; it does not, and could not, lead to a more reliably "optimal" cost of carbon. Cost-effectiveness analysis, focusing on the generally shorter-term cost side of the problem, reduces the economic paradoxes of the long run, and may make a greater contribution than economic optimization modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.