Recent studies have utilized coarse spatial and temporal resolution remotely sensed solar‐induced fluorescence (SIF) for modeling terrestrial gross primary productivity (GPP) at regional scales. Although these studies have demonstrated the potential of SIF, there have been concerns about the ecophysiological basis of the relationship between SIF and GPP in different environmental conditions. Launched in 2014, the Orbiting Carbon Observatory‐2 (OCO‐2) has enabled fine‐scale (1.3 by 2.5 km) retrievals of SIF that are comparable with measurements recorded at eddy covariance towers. In this study, we examine the effect of environmental conditions on the relationship of OCO‐2 SIF with tower GPP over the course of a growing season at a well‐characterized natural grassland site. Combining OCO‐2 SIF and eddy covariance tower data with a canopy radiative transfer and an ecosystem model, we also assess the potential of OCO‐2 SIF to constrain the estimates of Vcmax, one of the most important parameters in ecosystem models. Based on the results, we suggest that although environmental conditions play a role in determining the nature of relationship between SIF and GPP, overall, the linear relationship is more robust at ecosystem scale than the theory based on leaf‐level processes might suggest. Our study also shows that the ability of SIF to constrain Vcmax is weak at the selected site.
Hyperspectral imaging spectrometers mounted on unmanned aerial vehicle (UAV) can capture high spatial and spectral resolution to provide cotton crop nitrogen status for precision agriculture. The aim of this research was to explore machine learning use with hyperspectral datacubes over agricultural fields. Hyperspectral imagery was collected over a mature cotton crop, which had high spatial (~5.2 cm) and spectral (5 nm) resolution over the spectral range 475–925 nm that allowed discrimination of individual crop rows and field features as well as a continuous spectral range for calculating derivative spectra. The nominal reflectance and its derivatives clearly highlighted the different treatment blocks and were strongly related to N concentration in leaf and petiole samples, both in traditional vegetation indices (e.g., Vogelman 1, R2 = 0.8) and novel combinations of spectra (R2 = 0.85). The key hyperspectral bands identified were at the red-edge inflection point (695–715 nm). Satellite multispectral was compared against the UAV hyperspectral remote sensing’s performance by testing the ability of Sentinel MSI to predict N concentration using the bands in VIS-NIR spectral region. The Sentinel 2A Green band (B4; mid-point 559.8 nm) explained the same amount of variation in N as the hyperspectral data and more than the Sentinel Red Edge Point 1 (B5; mid-point 704.9 nm) with the lower 10 m resolution Green band reporting an R2 = 0.85, compared with the R2 = 0.78 of downscaled Sentinel Red Edge Point 1 at 5 m. The remaining Sentinel bands explained much lower variation (maximum was NIR at R2 = 0.48). Investigation of the red edge peak region in the first derivative showed strong promise with RIDAmid (R2 = 0.81) being the best index. The machine learning approach narrowed the range of bands required to investigate plant condition over this trial site, greatly improved processing time and reduced processing complexity. While Sentinel performed well in this comparison and would be useful in a broadacre crop production context, the impact of pixel boundaries relative to a region of interest and coarse spatial and temporal resolution impacts its utility in a research capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.