Knee osteoarthritis (OA) is believed to be highly prevalent today because of recent increases in life expectancy and body mass index (BMI), but this assumption has not been tested using long-term historical or evolutionary data. We analyzed long-term trends in knee OA prevalence in the United States using cadaver-derived skeletons of people aged ≥50 y whose BMI at death was documented and who lived during the early industrial era (1800s to early 1900s; n = 1,581) and the modern postindustrial era (late 1900s to early 2000s; n = 819). Knee OA among individuals estimated to be ≥50 y old was also assessed in archeologically derived skeletons of prehistoric hunter-gatherers and early farmers (6000-300 B.P.; n = 176). OA was diagnosed based on the presence of eburnation (polish from bone-on-bone contact). Overall, knee OA prevalence was found to be 16% among the postindustrial sample but only 6% and 8% among the early industrial and prehistoric samples, respectively. After controlling for age, BMI, and other variables, knee OA prevalence was 2.1-fold higher (95% confidence interval, 1.5-3.1) in the postindustrial sample than in the early industrial sample. Our results indicate that increases in longevity and BMI are insufficient to explain the approximate doubling of knee OA prevalence that has occurred in the United States since the mid-20th century. Knee OA is thus more preventable than is commonly assumed, but prevention will require research on additional independent risk factors that either arose or have become amplified in the postindustrial era.arthritis | aging | obesity | mismatch disease | evolutionary medicine
The prevalence of osteoarthritis (OA) is rising for reasons that are not fully understood. In this Opinion article, we review the possibility that OA is an evolutionary mismatch disease, which is a disease more common today than in the past because genes inherited from previous generations are inadequately or imperfectly adapted to modern environmental conditions. We focus on four major environmental factors in OA pathogenesis that have become ubiquitous within the past half-century: obesity, metabolic syndrome, dietary changes and physical inactivity. Because a cure for OA does not yet exist, prevention strategies that target these modifiable environmental factors are needed to curb further increases in OA prevalence.
Here, we determine annual estimates of occupancy and species trends for 5,293 UK bryophytes, lichens, and invertebrates, providing national scale information on UK biodiversity change for 31 taxonomic groups for the time period 1970 to 2015. The dataset was produced through the application of a Bayesian occupancy modelling framework to species occurrence records supplied by 29 national recording schemes or societies (n = 24,118,549 records). In the UK, annual measures of species status from fine scale data (e.g. 1 × 1 km) had previously been limited to a few taxa for which structured monitoring data are available, mainly birds, butterflies, bats and a subset of moth species. By using an occupancy modelling framework designed for use with relatively low recording intensity data, we have been able to estimate species trends and generate annual estimates of occupancy for taxa where annual trend estimates and status were previously limited or unknown at this scale. These data broaden our knowledge of UK biodiversity and can be used to investigate variation in and drivers of biodiversity change.
We have previously reported that loss-of-function mutations in the cathepsin C gene (CTSC) result in Papillon-Lefèvre syndrome, an autosomal recessive condition characterized by palmoplantar keratosis and early-onset, severe periodontitis. Others have also reported CTSC mutations in patients with severe prepubertal periodontitis, but without any skin manifestations. The possible role of CTSC variants in more common types of non-mendelian, early-onset, severe periodontitis ("aggressive periodontitis") has not been investigated. In this study, we have investigated the role of CTSC in all three conditions. We demonstrate that PLS is genetically homogeneous and the mutation spectrum that includes three novel mutations (c.386T>A/p.V129E, c.935A>G/p.Q312R, and c.1235A>G/p.Y412C) in 21 PLS families (including eight from our previous study) provides an insight into structure-function relationships of CTSC. Our data also suggest that a complete loss-of-function appears to be necessary for the manifestation of the phenotype, making it unlikely that weak CTSC mutations are a cause of aggressive periodontitis. This was confirmed by analyses of the CTSC activity in 30 subjects with aggressive periodontitis and age-sex matched controls, which demonstrated that there was no significant difference between these two groups (1,728.7 +/- SD 576.8 micro moles/mg/min vs. 1,678.7 +/- SD 527.2 micro moles/mg/min, respectively, p = 0.73). CTSC mutations were detected in only one of two families with prepubertal periodontitis; these did not form a separate functional class with respect to those observed in classical PLS. The affected individuals in the other prepubertal periodontitis family not only lacked CTSC mutations, but in addition did not share the haplotypes at the CTSC locus. These data suggest that prepubertal periodontitis is a genetically heterogeneous disease that, in some families, just represents a partially penetrant PLS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.