Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.Green leaves are fundamental for the functioning of terrestrial ecosystems. Their pigments are the predominant signal seen from space. Nitrogen uptake and carbon assimilation by plants and the decomposability of leaves drive biogeochemical cycles. Animals, fungi and other heterotrophs in ecosystems are fuelled by photosynthate, and their habitats are structured by the stems on which leaves are deployed. Plants invest photosynthate and mineral nutrients in the construction of leaves, which in turn return a revenue stream of photosynthate over their lifetimes. The photosynthate is used to acquire mineral nutrients, to support metabolism and to re-invest in leaves, their supporting stems and other plant parts.There are more than 250,000 vascular plant species, all engaging in the same processes of investment and reinvestment of carbon and mineral nutrients, and all making enough surplus to ensure continuity to future generations. These processes of investment and re-investment are inherently economic in nature [1][2][3] . Understanding how these processes vary between species, plant functional types and the vegetation of different biomes is a major goal for plant ecology and crucial for modelling how nutrient fluxes and vegetation boundaries will shift with land-use and climate change. Data set and parametersWe formed a global plant trait network (Glopnet) to quantify leaf economics across the world's plant species. The Glopnet data set spans 2,548 species from 219 families at 175 sites (approximately 1% of the extant vascular plant species). The coverage of traits, species and sites is at least tenfold greater than previous data compilations [4][5][6][7][8][9][10][11] , extends to all vegetated continents, and represents a wide range of vegetation types, from arctic tundra to tropical rainforest, from hot to cold deserts, from boreal forest to grasslands. Site elevation ranges from below sea level (Death Valley, USA) to 4,800 m. Mean annual temperature (MAT) ranges from 216.5 8C to 27.5 8C; mean annual rainfall (MAR) ranges from 133 to 5,300 mm per year. This cove...
The authors regret that elements of Appendix 1 were incorrect in the original publication. The correct version of Appendix 1 is given below. Appendix 1. Summary of plant traits Summary of plant traits included in the handbookThe range of values corresponds to those generally reported for field-grown plants. Ranges of values are based on the literature and the authors' datasets and do not always necessarily correspond to the widest ranges that exist in nature or are theoretically possible. Recommended sample size indicates the minimum and preferred number of individuals to be sampled, so as to obtain an appropriate indication of the values for the trait of interest; when only one value is given, it corresponds to the number of individuals ( = replicates); when two values are given, the first one corresponds to the number of individuals and the second one to the number of organs to be measured per individual. Note that one replicate can be compounded from several individuals (for smaller species), whereas one individual cannot be used for different replicates. The expected coefficient of variation (CV) range gives the 20th and the 80th percentile of the CV ( = s.d. scaled to the mean) as observed in several datasets obtained for a range of field plants for different biomes. Numbering of plant traits corresponds with the numbering of the chapters in the handbook Abstract. Plant functional traits are the features (morphological, physiological, phenological) that represent ecological strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem properties. Variation in plant functional traits, and trait syndromes, has proven useful for tackling many important ecological questions at a range of scales, giving rise to a demand for standardised ways to measure ecologically meaningful plant traits. This line of research has been among the most fruitful avenues for understanding ecological and evolutionary patterns and processes. It also has the potential both to build a predictive set of local, regional and global relationships between plants and environment and to quantify a wide range of natural and human-driven processes, including changes in biodiversity, the impacts of species invasions, alterations in biogeochemical processes and vegetation-atmosphere interactions. The importance of these topics dictates the urgent need for more and better data, and increases the value of standardised protocols for quantifying trait variation of different species, in particular for traits with power to predict plant-and ecosystemlevel processes, and for traits that can be measured relatively easily. Updated and expanded from the widely used previous version, this handbook retains the focus on clearly presented, widely applicable, step-by-step recipes, with a minimum of text on theory, and not only includes updated methods for the traits previously covered, but also introduces many new protocols for further traits. This new handbook has a better balance between whole-plant ...
An important aim of plant ecology is to identify leading dimensions of ecological variation among species and to understand the basis for them. Dimensions that can readily be measured would be especially useful, because they might offer a path towards improved worldwide synthesis across the thousands of field experiments and ecophysiological studies that use just a few species each. Four dimensions are reviewed here. The leaf mass per area-leaf lifespan (LMA-LL) dimension expresses slow turnover of plant parts (at high LMA and long LL), long nutrient residence times, and slow response to favorable growth conditions. The seed mass-seed output (SM-SO) dimension is an important predictor of dispersal to establishment opportunities (seed output) and of establishment success in the face of hazards (seed mass). The LMA-LL and SM-SO dimensions are each underpinned by a single, comprehensible tradeoff, and their consequences are fairly well understood. The leaf size-twig size (LS-TS) spectrum has obvious consequences for the texture of canopies, but the costs and benefits of large versus small leaf and twig size are poorly understood. The height dimension has universally been seen as ecologically important and included in ecological strategy schemes. Nevertheless, height includes several tradeoffs and adaptive elements, which ideally should be treated separately. Each of these four dimensions varies at the scales of climate zones and of site types within landscapes. This variation can be interpreted as adaptation to the physical environment. Each dimension also varies widely among coexisting species. Most likely this within-site variation arises because the ecological opportunities for each species depend strongly on which other species are present, in other words, because the set of species at a site is a stable mixture of strategies.
SummaryHere, we analysed a wide range of literature data on the leaf dry mass per unit area (LMA). In nature, LMA varies more than 100-fold among species. Part of this variation (c. 35%) can be ascribed to differences between functional groups, with evergreen species having the highest LMA, but most of the variation is within groups or biomes. When grown in the same controlled environment, leaf succulents and woody evergreen, perennial or slow-growing species have inherently high LMA. Within most of the functional groups studied, high-LMA species show higher leaf tissue densities. However, differences between evergreen and deciduous species result from larger volumes per area (thickness). Response curves constructed from experiments under controlled conditions showed that LMA varied strongly with light, temperature and submergence, moderately with CO 2 concentration and nutrient and water stress, and marginally under most other conditions. Functional groups differed in the plasticity of LMA to these gradients. The physiological regulation is still unclear, but the consequences of variation in LMA and the suite of traits interconnected
Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.