We analyze the risk of contracting illness due to the consumption in the United States of hamburgers contaminated with enterohemorrhagic Escherichia coli (EHEC) of serogroup O157 produced from manufacturing beef imported from Australia. We have used a novel approach for estimating risk by using the prevalence and concentration estimates of E. coli O157 in lots of beef that were withdrawn from the export chain following detection of the pathogen. For the purpose of the present assessment an assumption was that no product is removed from the supply chain following testing. This, together with a number of additional conservative assumptions, leads to an overestimation of E. coli O157-associated illness attributable to the consumption of ground beef patties manufactured only from Australian beef. We predict 49.6 illnesses (95%: 0.0-148.6) from the 2.46 billion hamburgers made from 155,000 t of Australian manufacturing beef exported to the United States in 2012. All these illness were due to undercooking in the home and less than one illness is predicted from consumption of hamburgers cooked to a temperature of 68 °C in quick-service restaurants.
A national survey of the microbiology of meat (ground beef and diced lamb) at the retail level in Australia was undertaken. For ground beef samples (n = 360), the mean aerobic plate count (APC) was 5.79 log CFU/g, and Escherichia coli was detected in 17.8% of samples; the mean population for these positive samples was 1.49 log CFU/g. Enterobacteriaceae were detected in 96.9% of samples (mean for positive samples, 3.01 log CFU/g), and coagulase-positive staphylococci were detected in 28.1% of samples (mean for positive samples, 2.18 log CFU/g). For diced lamb samples (n = 360), the mean APC was 5.71 log CFU/g, and E. coli was detected in 16.7% of samples (mean for positive samples, 1.67 log CFU/g). Enterobacteriaceae were detected in 91.1% of samples (mean for positive samples, 2.85 log CFU/g), and coagulase-positive staphylococci were detected in 22.5% of samples (mean for positive samples, 2.34 log CFU/g). Salmonella was recovered from 4 (1.1%) of the 360 ground beef samples (isolates were Salmonella Typhimurium phage types), and E. coli O157 was recovered from 1 (0.3%) of 357 samples; Campylobacter and Clostridium perfringens were not recovered from any of the 91 and 94 samples tested, respectively. Salmonella was recovered from 2 (0.6%) of the 360 diced lamb samples (serovars were Salmonella Infantis and Salmonella Typhimurium), Campylobacter was recovered from 1 (1.1%) of 95 samples, and C. perfringens was recovered from 1 (1.1%) of 92 samples.
The third national baseline microbiological survey of Australian beef carcasses and frozen boneless beef was conducted in 2004. Carcasses (n=1155) sampled at 27 slaughter establishments had a mean aerobic plate count (at 25 degrees C) of 1.3 log CFU/cm2. Escherichia coli was isolated from 8.0% of the cacasses, with a mean count of -0.8 log CFU/cm2 for positive samples. On samples from 24 boning (fabrication) plants (n=1082), the mean aerobic plate count for frozen boneless beef was 1.3 log CFU/g, and the mean count for the 1.8% of samples with detectable E. coli was 1.5 log CFU/g. E. coli O157: H7 was isolated from 1 of 1,143 carcasses and from 0 of 1082 boneless samples. Salmonella was isolated from 0 of 1155 carcasses and from 1 of 1082 samples of boneless product. No Campylobacter spp. were isolated from carcasses or boneless beef. Coagulase-positive staphylococci were isolated from 28.7% of beef carcasses and 20.3% of boneless beef samples, and positive samples had a mean count of 0.3 log CFU/cm2 and 0.8 log CFU/g, respectively.
The aims of this work were to determine the distribution and concentration of Escherichia coli O157 in lots of beef destined for grinding (manufacturing beef) that failed to meet Australian requirements for export, to use these data to better understand the performance of sampling plans based on the binomial distribution, and to consider alternative approaches for evaluating sampling plans. For each of five lots from which E. coli O157 had been detected, 900 samples from the external carcass surface were tested. E. coli O157 was not detected in three lots, whereas in two lots E. coli O157 was detected in 2 and 74 samples. For lots in which E. coli O157 was not detected in the present study, the E. coli O157 level was estimated to be <12 cells per 27.2-kg carton. For the most contaminated carton, the total number of E. coli O157 cells was estimated to be 813. In the two lots in which E. coli O157 was detected, the pathogen was detected in 1 of 12 and 2 of 12 cartons. The use of acceptance sampling plans based on a binomial distribution can provide a falsely optimistic view of the value of sampling as a control measure when applied to assessment of E. coli O157 contamination in manufacturing beef. Alternative approaches to understanding sampling plans, which do not assume homogeneous contamination throughout the lot, appear more realistic. These results indicate that despite the application of stringent sampling plans, sampling and testing approaches are inefficient for controlling microbiological quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.