Studies on information processing and learning properties of neuronal networks would benefit from simultaneous and parallel access to the activity of a large fraction of all neurons in such networks. Here, we present a CMOS-based device, capable of simultaneously recording the electrical activity of over a thousand cells in in vitro neuronal networks. The device provides sufficiently high spatiotemporal resolution to enable, at the same time, access to neuronal preparations on subcellular, cellular, and network level. The key feature is a rapidly reconfigurable array of 26 400 microelectrodes arranged at low pitch (17.5 μm) within a large overall sensing area (3.85 × 2.10 mm(2)). An arbitrary subset of the electrodes can be simultaneously connected to 1024 low-noise readout channels as well as 32 stimulation units. Each electrode or electrode subset can be used to electrically stimulate or record the signals of virtually any neuron on the array. We demonstrate the applicability and potential of this device for various different experimental paradigms: large-scale recordings from whole networks of neurons as well as investigations of axonal properties of individual neurons.
In the last decade the zebrafish has become a major model organism for the study of development and organogenesis. To maximize the experimental utility of this organism, it will be important to establish methods for adult phenotyping. We previously proposed that the embryonic zebrafish may be useful in high-throughput screening for drug-induced cardiotoxicity. We now describe a method for the reproducible recording of the adult zebrafish ECG and illustrate its application in the investigation of QT-prolonging drugs. Zebrafish ECGs were obtained by inserting two needle electrodes through the ventral epidermis. Fish were perfused orally, and motion artifacts were eliminated with a paralytic dose of mu-conotoxin GIIIB. Test compounds were delivered via the perfusion system. Without a means of hydration and oxygenation, the fish succumb rapidly. The use of a perfusion system allowed stable recording for > 6 h. Baseline conduction intervals were as follows: PR, 66 ms (SD 14); QRS, 34 ms (SD 11); QT, 242 ms (SD 54); and R-R, 398 ms (SD 77). The known QT-prolonging agents astemizole, haloperidol, pimozide, and terfenadine caused corrected QT increases of 18% (SD 9), 16% (SD 11), 17% (SD 9), and 11% (SD 6), respectively. The control drugs clonidine, penicillin and propranolol did not prolong the corrected QT interval. In conclusion, perfusion and muscular paralysis allows stable, low-noise recording of zebrafish ECGs. Agents known to cause QT prolongation in humans caused QT prolongation in fish in each case. The development of rigorous tools for the phenotyping of adult zebrafish will complement the high-throughput assays currently under development for embryonic and larval fish.
To advance our understanding of the functioning of neuronal ensembles, systems are needed to enable simultaneous recording from a large number of individual neurons at high spatiotemporal resolution and good signal-to-noise ratio. Moreover, stimulation capability is highly desirable for investigating, for example, plasticity and learning processes. Here, we present a microelectrode array (MEA) system on a single CMOS die for in vitro recording and stimulation. The system incorporates 26,400 platinum electrodes, fabricated by in-house post-processing, over a large sensing area (3.85 × 2.10 mm 2 ) with sub-cellular spatial resolution (pitch of 17.5 μm). Owing to an area and power efficient implementation, we were able to integrate 1024 readout channels on chip to record extracellular signals from a user-specified selection of electrodes. These channels feature noise values of 2.4 μV rms in the action-potential band (300 Hz-10 kHz) and 5.4 μV rms in the local-field-potential band (1 Hz-300 Hz), and provide programmable gain (up to 78 dB) to accommodate various biological preparations. Amplified and filtered signals are digitized by 10 bit parallel single-slope ADCs at 20 kSamples/s. The system also includes 32 stimulation units, which can elicit neural spikes through either current or voltage pulses. The chip consumes only 75 mW in total, which obviates the need of active cooling even for sensitive cell cultures. I IntroductionEXTRACELLULAR RECORDINGS of the electrical activity of neural and cardiac cell networks in organs such as the brain, the retina, or the heart, can provide a wealth of information about the physiology as well as the pathological degenerations that may cause diseases, such as Parkinson's or Alzheimer's. Microelectrode arrays (MEAs) have been used for a long time for in vitro extracellular recordings of electrogenic cell cultures and tissues, such as acute or organotypic brain slices and retinae [1]- [3]. They provide simultaneous multisite recording capability, which is essential to study cellular interconnections and network properties that arise from synchronized cellular activity [4], [5]. However, passive MEAs, which typically include metal electrodes on a glass substrate, are limited in both the number of electrodes (usually less than 300) and the spatial resolution (typically ≥ 30 μm),features that are needed to reconstruct large neural networks at cellular detail.With CMOS technology, these limitations can be overcome by using multiplexing techniques, which enable access to a large number of closely-spaced electrodes to obtain large sensing areas at high spatial resolution [6]. Moreover, the monolithic integration of recording amplifiers and ADCs, on the same substrate with the electrodes, avoids off-chip parasitics and interference and, at the same time, allows for realizing a large number of recording channels with a low number of connections. In this paper, we present a recently developed CMOS MEA system that further exploits the switch-matrix approach. The system preserves s...
Background-Cardiac repolarization, the process by which cardiomyocytes return to their resting potential after each beat, is a highly regulated process that is critical for heart rhythm stability. Perturbations of cardiac repolarization increase the risk for life-threatening arrhythmias and sudden cardiac death. Although genetic studies of familial long-QT syndromes have uncovered several key genes in cardiac repolarization, the major heritable contribution to this trait remains unexplained. Identification of additional genes may lead to a better understanding of the underlying biology, aid in identification of patients at risk for sudden death, and potentially enable new treatments for susceptible individuals. Methods and Results-We extended and refined a zebrafish model of cardiac repolarization by using fluorescent reporters of transmembrane potential. We then conducted a drug-sensitized genetic screen in zebrafish, identifying 15 genes, including GINS3, that affect cardiac repolarization. Testing these genes for human relevance in 2 concurrently completed genome-wide association studies revealed that the human GINS3 ortholog is located in the 16q21 locus, which is strongly associated with QT interval. Conclusions-This sensitized zebrafish screen identified 15 novel myocardial repolarization genes. Among these genes isGINS3, the human ortholog of which is a major locus in 2 concurrent human genome-wide association studies of QT interval. These results reveal a novel network of genes that regulate cardiac repolarization. (Circulation. 2009;120:553-559.) Key Words: electrophysiology Ⅲ genes Ⅲ ion channels Ⅲ myocardial repolarization T he ECG QT interval duration is a predictor of mortality in familial long QT (LQT) syndromes 1 and in a wide range of acquired heart diseases. 2,3 QT prolongation by drugs can lead to fatal arrhythmias and has been a major cause of the withdrawal of medications from the market in the last decade. 4 Virtually all drugs that cause this adverse effect inhibit the rapid component of the delayed rectifier current, I Kr . 5 Clinical Perspective on p 559The QT interval, a summation of individual cellular action potential (AP) durations (APDs), is known to depend on the function of multiple ion channels and their accessory proteins. Much of our current understanding of cardiac repolarization comes from study of LQT syndromes. 6,7 These disorders are marked by abnormal cardiac repolarization and a high incidence of sudden death. 8 Although the majority of LQT disorders result from mutation of ion channel genes, there is increasing recognition of the role of non-ion channel mechanisms such as ankyrin B 9 and the caveolar scaffolding protein caveolin 3. 10 The zebrafish has been shown to recapitulate much of the complexity of higher vertebrates 11 yet retains the potential for exploring integrative physiology on a genomic scale. 12,13 Here, we studied cardiac repolarization as a complex trait using a functional screen to identify novel genetic determinants. Received September 11, 2008; accept...
Estimating GFR using formulae based on s-creatinine or s-cystatin C alone was equally accurate according to the NKF K/DOQI guidelines. A formula that combines both provided a greater accuracy. If Cystatin C, which is clearly more expensive, is used, the choice of the cystatin C determination method and an adjusted prediction equation is essential. Use of the IDMS-traceable MDRD seems to yield the best cost-benefit ratio for routine practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.