Abstract-We present a GPS-enabled channel sounding platform for measuring both vehicle-to-vehicle and vehicle-toroadside wireless channels. This platform was used to conduct an extensive field measurement campaign involving vehicular wireless channels across a wide variety of speeds and line-of-sight conditions. From the data, we present statistical characterizations of several classes of these channels at 5.9 GHz. This analysis suggests that while the proposed DSRC standard may account for Doppler and delay spreads in vehicular channels, large packets may face higher error rates due to time-varying channels.
Adapting OFDM for vehicular communication requires extensive knowledge of anticipated multipath and Doppler environments. We present a GPS-enabled channel sounding system built and used to conduct a channel measurement campaign. Tests conducted at the 700 MHz band in and around downtown Ann Arbor, Michigan, explored various vehicle-to-vehicle and vehicle-to-roadside channel scenarios. The measured channel metrics are used to quantify the effects on guard interval, packet duration, and subcarrier spacing for a functional OFDM system at 700 MHz. This paper is one of the first to present vehicular-based channel-modeling results from measured data in the 700 MHz band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.