Purpose The purpose is twofold. First, this study aims to establish that black box tree-based machine learning (ML) models have better predictive performance than a standard linear regression (LR) hedonic model for rent prediction. Second, it shows the added value of analyzing tree-based ML models with interpretable machine learning (IML) techniques. Design/methodology/approach Data on Belgian residential rental properties were collected. Tree-based ML models, random forest regression and eXtreme gradient boosting regression were applied to derive rent prediction models to compare predictive performance with a LR model. Interpretations of the tree-based models regarding important factors in predicting rent were made using SHapley Additive exPlanations (SHAP) feature importance (FI) plots and SHAP summary plots. Findings Results indicate that tree-based models perform better than a LR model for Belgian residential rent prediction. The SHAP FI plots agree that asking price, cadastral income, surface livable, number of bedrooms, number of bathrooms and variables measuring the proximity to points of interest are dominant predictors. The direction of relationships between rent and its factors is determined with SHAP summary plots. In addition to linear relationships, it emerges that nonlinear relationships exist. Originality/value Rent prediction using ML is relatively less studied than house price prediction. In addition, studying prediction models using IML techniques is relatively new in real estate economics. Moreover, to the best of the authors’ knowledge, this study is the first to derive insights of driving determinants of predicted rents from SHAP FI and SHAP summary plots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.