Abstract-We consider the problem of detecting robotic grasps in an RGB-D view of a scene containing objects. In this work, we apply a deep learning approach to solve this problem, which avoids time-consuming hand-design of features. This presents two main challenges. First, we need to evaluate a huge number of candidate grasps. In order to make detection fast, as well as robust, we present a two-step cascaded structure with two deep networks, where the top detections from the first are re-evaluated by the second. The first network has fewer features, is faster to run, and can effectively prune out unlikely candidate grasps. The second, with more features, is slower but has to run only on the top few detections. Second, we need to handle multimodal inputs well, for which we present a method to apply structured regularization on the weights based on multimodal group regularization. We demonstrate that our method outperforms the previous state-of-the-art methods in robotic grasp detection, and can be used to successfully execute grasps on a Baxter robot.
Designing controllers for tasks with complex nonlinear dynamics is extremely challenging, time-consuming, and in many cases, infeasible. This difficulty is exacerbated in tasks such as robotic food-cutting, in which dynamics might vary both with environmental properties, such as material and tool class, and with time while acting. In this work, we present DeepMPC, an online real-time model-predictive control approach designed to handle such difficult tasks. Rather than hand-design a dynamics model for the task, our approach uses a novel deep architecture and learning algorithm, learning controllers for complex tasks directly from data. We validate our method in experiments on a large-scale dataset of 1488 material cuts for 20 diverse classes, and in 450 real-world robotic experiments, demonstrating significant improvement over several other approaches.
Abstract-Semantic labeling of RGB-D scenes is very important in enabling robots to perform mobile manipulation tasks, but different tasks may require entirely different sets of labels. For example, when navigating to an object, we may need only a single label denoting its class, but to manipulate it, we might need to identify individual parts. In this work, we present an algorithm that produces hierarchical labelings of a scene, following is-part-of and is-type-of relationships. Our model is based on a Conditional Random Field that relates pixel-wise and pair-wise observations to labels. We encode hierarchical labeling constraints into the model while keeping inference tractable. Our model thus predicts different specificities in labeling based on its confidence-if it is not sure whether an object is Pepsi or Sprite, it will predict soda rather than making an arbitrary choice. In extensive experiments, both offline on standard datasets as well as in online robotic experiments, we show that our model outperforms other stateof-the-art methods in labeling performance as well as in success rate for robotic tasks.
Abstract-We consider the problem of detecting robotic grasps in an RGB-D view of a scene containing objects. In this work, we apply a deep learning approach to solve this problem, which avoids time-consuming hand-design of features. This presents two main challenges. First, we need to evaluate a huge number of candidate grasps. In order to make detection fast, as well as robust, we present a two-step cascaded structure with two deep networks, where the top detections from the first are re-evaluated by the second. The first network has fewer features, is faster to run, and can effectively prune out unlikely candidate grasps. The second, with more features, is slower but has to run only on the top few detections. Second, we need to handle multimodal inputs well, for which we present a method to apply structured regularization on the weights based on multimodal group regularization. We demonstrate that our method outperforms the previous state-of-the-art methods in robotic grasp detection, and can be used to successfully execute grasps on a Baxter robot.
A robot operating in a real-world environment needs to perform reasoning over a variety of sensor modalities such as vision, language and motion trajectories. However, it is extremely challenging to manually design features relating such disparate modalities. In this work, we introduce an algorithm that learns to embed point-cloud, natural language, and manipulation trajectory data into a shared embedding space with a deep neural network. To learn semantically meaningful spaces throughout our network, we use a loss-based margin to bring embeddings of relevant pairs closer together while driving lessrelevant cases from different modalities further apart. We use this both to pre-train its lower layers and fine-tune our final embedding space, leading to a more robust representation. We test our algorithm on the task of manipulating novel objects and appliances based on prior experience with other objects. On a large dataset, we achieve significant improvements in both accuracy and inference time over the previous state of the art. We also perform end-to-end experiments on a PR2 robot utilizing our learned embedding space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.