A highly Lewis acidic diphosphonium dication [(C10H6)(Ph2P)2](2+) (1), in combination with a Lewis basic phosphine, acts as a purely phosphorus-based frustrated Lewis pair (FLP) and abstracts hydride from [HB(C6F5)3](-) and Et3SiH demonstrating the remarkable hydridophilicity of 1. The P-based FLP is also shown to activate H2 and C-H bonds.
Ketones are efficiently deoxygenated in the presence of silane using highly electrophilic phosphonium cation (EPC) salts as catalysts, thus affording the corresponding alkane and siloxane. The influence of distinct substitution patterns on the catalytic effectiveness of several EPCs was evaluated. The deoxygenation mechanism was probed by DFT methods.
A series of mononuclear, heteroleptic beryllium complexes supported by the monoanionic β-diketiminate ligand [HC{CMeNDipp}(2)](-) (L; Dipp = 2,6-diisopropylphenyl) have been synthesized. Halide complexes of the form [LBeX] (X = Cl, I) and a bis(trimethylsilyl)amide complex were produced via salt metathesis routes. Alkylberyllium β-diketiminate complexes of the form [LBeR] (R = Me, (n)Bu) were obtained by salt metathesis from the chloride precursor [LBeCl]. Controlled hydrolysis of [LBeMe] afforded an air-stable, monomeric β-diketiminatoberyllium hydroxide complex. [LBeMe] also underwent facile protonolysis with alcohols to form the corresponding β-diketiminatoberyllium alkoxides [LBeOR] (R = Me, (t)Bu, Ph). High temperatures and prolonged reaction times were required for protonolysis of [LBeMe] with primary amines to yield the β-diketiminatoberyllium amide complexes [LBeNHR] (R = (n)Bu, CH(2)Ph, Ph). No reactions were observed between [LBeMe] and silanes, terminal acetylenes, or secondary amines. All compounds were characterized by (1)H, (13)C, and (9)Be NMR spectroscopy and, in most cases, by X-ray crystallography. Reduction of the beryllium chloride complex with potassium metal resulted in apparent hydrogen-atom transfer between two β-diketiminate backbones, yielding two dimeric, potassium chloride bridged diamidoberyllium species. X-ray analysis of a cocrystallized mixture of the 18-crown-6 adducts of these species allowed unambiguous identification of the two reduced diketiminate ligands, one of which had been deprotonated at a backbone methyl substituent and the other reduced by hydride addition to the β-imine position. It is proposed that this process occurs by the formation of an unobserved radical anion species and intermolecular hydrogen-atom transfer by a radical-based hydrogen abstraction mechanism.
Attempted coordination of "Ga(I)I" with two new sterically bulky, aryl substituted bis(imino)pyridine ligands lead to Ga(III) species [2,6-{ArN=CPh}(2)(NC(5)H(3))]GaI(2)(+)GaI(4)(-) (Ar = 2,5-(t)Bu(2)C(6)H(3), 2,6-(i)Pr(2)C(6)H(3) = Dipp) arising from thermodynamically favorable disproportionation reactions. Examination of these reactions lead to isolation of a neutral radical species [2,6-{DippN=CPh}(2)(NC(5)H(3))]GaI(2). Both EPR spectroscopy and DFT calculations on this compound indicate that the unpaired electron is localized in a di(imino)pyridine pi* orbital of an anionic ligand with nearly zero contribution from the Ga or I centers. Reaction of {2,5-(t)Bu(2)C(6)H(3)N=CPh}(2)(NC(5)H(3)) with AlCl(3) yielded an analogous Al(iii) product, [{2,5-(t)Bu(2)C(6)H(3)N=CPh}(2)(NC(5)H(3))]AlCl(2)(+)AlCl(4)(-).
Single defluorination of aryl polyfluoromethyl functionalities is achieved by both intra- and intermolecular silylium cation/phosphine Lewis pairs. Phosphine-captured aryl fluoromethyl cations are then treated with Brønsted base to complete the first mono-hydrodefluorinations of PhCF , Ph CF , and PhCF .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.