Minimally invasive techniques to resect the esophagus in patients with cancer were confirmed to be safe and comparable to an open approach with respect to postoperative recovery and cancer survival.
Genetic studies have provided valuable insight into the pathological mechanisms underlying Parkinson’s disease (PD). The elucidation of the genetic components to what was once largely considered a non-genetic disease has given rise to a multitude of cell and animal models enabling the dissection of molecular pathways involved in disease etiology. Here, we review advances obtained from models of dominant mutations in α-synuclein and LRRK2 as well as recessive PINK1, Parkin and DJ-1 mutations. Recent genome-wide association studies have implicated genetic variability at two of these loci, α-synuclein and LRRK2, as significant risk factors for developing sporadic PD. This, coupled to the established role of mitochondrial impairment in both familial and sporadic PD highlights the likelihood of common mechanisms fundamental to the etiology of both.
Summary
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial and sporadic Parkinson's disease (PD). Elevated LRRK2 kinase activity and neurodegeneration are linked, but the phosphosubstrate that connects LRRK2 kinase activity to neurodegeneration is not known. Here, we show that ribosomal protein s15 is a key pathogenic LRRK2 substrate in Drosophila and human neuron PD models. Phospho-deficient s15 carrying a threonine 136 to alanine substitution rescues dopamine neuron degeneration and age-related locomotor deficits in G2019S LRRK2 transgenic Drosophila and substantially reduces G2019S LRRK2-mediated neurite loss and cell death in human dopamine and cortical neurons. Remarkably, pathogenic LRRK2 stimulates both cap-dependent and cap-independent mRNA translation, and induces a bulk increase in protein synthesis in Drosophila, which can be prevented by phospho-deficient T136A s15. These results reveal a novel mechanism of PD pathogenesis linked to elevated LRRK2 kinase activity and aberrant protein synthesis in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.