Poultry meat and eggs contaminated with Salmonella enterica serovar Enteritidis or Salmonella enterica serovar Typhimurium are common sources of acute gastroenteritis in humans. However, the exact nature of the immune mechanisms protective against Salmonella infection in chickens has not been characterized at the molecular level. In the present study, bacterial colonization, development of pathological lesions, and proinflammatory cytokine and chemokine gene expression were investigated in the liver, spleen, jejunum, ileum, and cecal tonsils in newly hatched chickens 6, 12, 24, and 48 h after oral infection with Salmonella serovar Typhimurium. Very high bacterial counts were found in the ileum and cecal contents throughout the experiment, whereas Salmonella started to appear in the liver only from 24 h postinfection. Large numbers of heterophils, equivalent to neutrophils in mammals, and inflammatory edema could be seen in the lamina propria of the intestinal villi and in the liver. Interleukin 8 (IL-8), K60 (a CXC chemokine), macrophage inflammatory protein 1 , and IL-1 levels were significantly upregulated in the intestinal tissues and in the livers of the infected birds. However, the spleens of the infected birds show little or no change in the expression levels of these cytokines and chemokines. Increased expression of the proinflammatory cytokines and chemokines (up to several hundred-fold) correlated with the presence of inflammatory signs in those tissues. This is the first description of in vivo expression of chemokines and proinflammatory cytokines in response to oral infection with Salmonella in newly hatched chickens.
Infection of poultry with Salmonella enterica serovar Typhimurium poses a significant risk to public health through contamination of meat from infected animals. Vaccination has been proposed to control infections in chickens. However, the vaccines are currently largely empirical, and our understanding of the mechanisms that underpin immune clearance and protection in avian salmonellosis is not complete. In this study we describe the cytokine, chemokine, and antibody responses and cellular changes in primary and secondary infections of chickens with Salmonella serovar Typhimurium. Infection of 1-week-old chickens induced early expression of a macrophage inflammatory protein (MIP) family chemokine in the spleen and liver, followed by increased expression of gamma interferon accompanied by increased numbers of both CD4؉ and CD8 ؉ T cells and the formation of granuloma-like follicular lesions. This response correlated with a Th1-mediated clearance of the systemic infection. Primary infection also induced specific immunoglobulin M (IgM), IgG, and IgA antibody responses. In contrast to previously published studies performed with newly hatched chicks, the expression levels of proinflammatory cytokines in the gastrointestinal tract were not greatly increased following infection. However, significant expression of the anti-inflammatory cytokine transforming growth factor 4 was detected in the gut early in infection. Following secondary challenge, the birds were fully protected against systemic infection and showed a high level of protection against gastrointestinal colonization. Rapid expression of the MIP family chemokine and interleukin-6 was detected in the guts of these birds and was accompanied by an influx of lymphocytes. Increased levels of serum IgA-specific antibodies were also found following rechallenge. These findings suggest that cellular responses, particularly Th1 responses, play a crucial role in immune clearance in avian salmonellosis and that protection against rechallenge involves the rapid recruitment of cells to the gastrointestinal tract. Additionally, the high levels of inflammatory response found following Salmonella serovar Typhimurium infection of newly hatched chicks were not observed following infection of older birds (1 week old), in which the expression of regulatory cytokines appeared to limit inflammation.
Toll-like receptors (TLRs) are a major component of the pattern recognition receptor repertoire that detect invading microorganisms and direct the vertebrate immune system to eliminate infection. In chickens, the differential biology of Salmonella serovars (systemic versus gut-restricted localization) correlates with the presence or absence of flagella, a known TLR5 agonist. Chicken TLR5 (chTLR5) exhibits conserved sequence and structural similarity with mammalian TLR5 and is expressed in tissues and cell populations of immunological and stromal origin. Exposure of chTLR5 ؉ cells to flagellin induced elevated levels of chicken interleukin-1 (chIL-1) but little upregulation of chIL-6 mRNA. Consistent with the flagellin-TLR5 hypothesis, an aflagellar Salmonella enterica serovar Typhimurium fliM mutant exhibited an enhanced ability to establish systemic infection. During the early stages of infection, the fliM mutant induced less IL-1 mRNA and polymorphonuclear cell infiltration of the gut. Collectively, the data represent the identification and functional characterization of a nonmammalian TLR5 and indicate a role in restricting the entry of flagellated Salmonella into systemic sites of the chicken.The pattern recognition receptors (PRRs) play a central role in the rapid initiation of host immune responses and the generic identification of an invading pathogen (36, 43) by recognition of pathogen-associated molecular patterns. Toll-like receptors (TLRs) have emerged as a major component of the vertebrate PRR repertoire. Upon activation, TLRs induce the expression of a wide range of immunoregulatory and effector molecules (41, 51) and maturation of immune cell types (1,3,11,24,50).A range of TLR genes has been identified in nonmammalian vertebrates including chicken (10, 18, 32) and fish (6,26,37). To date, avian orthologues of TLR2 and TLR4 have been characterized and expressed sequence tags (ESTs) with sequence homologies to TLR1, -6, or -10; TLR3; TLR5; and TLR7 have been identified (34, 48; our unpublished results). Two chicken TLR2 (chTLR2) molecules (type 1 and type 2) were identified that lie in a tandem arrangement within a genomic region expressing conserved synteny to mammals (10, 18). The chTLR4 gene was also demonstrated to lie in a region of conserved synteny and has been associated with susceptibility to systemic infection with Salmonella enterica serovar Typhimurium in young chickens (32). Collectively, these data indicate that a range of distinct TLR genes, orthologous to the mammalian TLR repertoire, were present before the divergence of birds and mammals over 300 million years ago.The observation that nonflagellated Salmonella enterica serovars (Gallinarum or Pullorum) typically cause more acute systemic infection than flagellated serovars (Typhimurium or Enteritidis) provoked our interest in chTLR5. Our working hypothesis was that TLR5-flagellin interactions contribute to the broad biology of Salmonella serovars in the chicken. We identified a chicken orthologue for TLR5, determined expression ...
We have ablated peripheral lymph nodes in sheep and subsequently cannulated the pseudo-afferent lymphatic vessel that arises as a consequence of afferent lymphatic vessels reanastomosing with the former efferent duct. This technique allows the collection of lymph with a cellular composition that resembles true afferent fluid, and in particular, containing 1-10% dendritic cells. A 16-h collection of this lymph may contain between 10(6) and 10(7) dendritic cells. This dendritic cell population may be enriched to greater than 75% by a single-density gradient centrifugation step. We have generated a mAb that recognizes sheep CD1. This monoclonal not only reacts with afferent dendritic cells, but with dendritic cells in the skin and paracortical T cell areas of lymph nodes. The expression of CD1 suggests afferent dendritic cells are related to skin Langerhans' cells and other dendritic cells that act as accessory cells for T cell responses. Consistent with this is the high level of expression by dendritic cells of molecules involved in antigen recognition by T cells, including MHC class I and class II. Afferent dendritic cells express high levels of the cellular adhesion molecule LFA-3, and at the same time express a ligand for this molecule, namely CD2. The accessory functions of afferent dendritic cells resemble those displayed by mature Langerhans' cells and by lymph node interdigitating cells. These include clustering with resting T cells and stimulating their proliferation in a primary response to antigen. Afferent dendritic cells are capable of acquiring soluble protein antigen in vivo or in vitro and presenting the material directly to autologous T cells in an antigen-specific manner. We conclude that afferent dendritic cells represent a lymph-borne Langerhans' cell involved in antigen carriage to the lymph node.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.