Abstract-The automatic recognition of sound events by computers is an important aspect of emerging applications such as automated surveillance, machine hearing and auditory scene understanding. Recent advances in machine learning, as well as in computational models of the human auditory system, have contributed to advances in this increasingly popular research field. Robust sound event classification, the ability to recognise sounds under real-world noisy conditions, is an especially challenging task. Classification methods translated from the speech recognition domain, using features such as mel-frequency cepstral coefficients, have been shown to perform reasonably well for the sound event classification task, although spectrogrambased or auditory image analysis techniques reportedly achieve superior performance in noise. This paper outlines a sound event classification framework that compares auditory image front end features with spectrogram image-based front end features, using support vector machine and deep neural network classifiers. Performance is evaluated on a standard robust classification task in different levels of corrupting noise, and with several system enhancements, and shown to compare very well with current state-of-the-art classification techniques.
Traditional sound event recognition methods based on informative front end features such as MFCC, with back end sequencing methods such as HMM, tend to perform poorly in the presence of interfering acoustic noise. Since noise corruption may be unavoidable in practical situations, it is important to develop more robust features and classifiers. Recent advances in this field use powerful machine learning techniques with high dimensional input features such as spectrograms or auditory image. These improve robustness largely thanks to the discriminative capabilities of the back end classifiers. We extend this further by proposing novel features derived from spectrogram energy triggering, allied with the powerful classification capabilities of a convolutional neural network (CNN). The proposed method demonstrates excellent performance under noise-corrupted conditions when compared against state-of-the-art approaches on standard evaluation tasks. To the author's knowledge this in the first application of CNN in this field.
This paper proposes an attention pooling based representation learning method for speech emotion recognition (SER). The emotional representation is learned in an end-to-end fashion by applying a deep convolutional neural network (CNN) directly to spectrograms extracted from speech utterances. Motivated by the success of GoogleNet, two groups of filters with different shapes are designed to capture both temporal and frequency domain context information from the input spectrogram. The learned features are concatenated and fed into the subsequent convolutional layers. To learn the final emotional representation, a novel attention pooling method is further proposed. Compared with the existing pooling methods, such as max-pooling and average-pooling, the proposed attention pooling can effectively incorporate class-agnostic bottom-up, and class-specific top-down, attention maps. We conduct extensive evaluations on benchmark IEMOCAP data to assess the effectiveness of the proposed representation. Results demonstrate a recognition performance of 71.8% weighted accuracy (WA) and 68% unweighted accuracy (UA) over four emotions, which outperforms the state-of-the-art method by about 3% absolute for WA and 4% for UA.
Background: Despite recent significant progress in the development of automatic sleep staging methods, building a good model still remains a big challenge for sleep studies with a small cohort due to the data-variability and data-inefficiency issues. This work presents a deep transfer learning approach to overcome these issues and enable transferring knowledge from a large dataset to a small cohort for automatic sleep staging. Methods: We start from a generic end-to-end deep learning framework for sequence-to-sequence sleep staging and derive two networks as the means for transfer learning. The networks are first trained in the source domain (i.e. the large database). The pretrained networks are then finetuned in the target domain (i.e. the small cohort) to complete knowledge transfer. We employ the Montreal Archive of Sleep Studies (MASS) database consisting of 200 subjects as the source domain and study deep transfer learning on three different target domains: the Sleep Cassette subset and the Sleep Telemetry subset of the Sleep-EDF Expanded database, and the Surrey-cEEGrid database. The target domains are purposely adopted to cover different degrees of data mismatch to the source domains. Results: Our experimental results show significant performance improvement on automatic sleep staging on the target domains achieved with the proposed deep transfer learning approach. Conclusions: These results suggest the efficacy of the proposed approach in addressing the above-mentioned data-variability and data-inefficiency issues. Significance: As a consequence, it would enable one to improve the quality of automatic sleep staging models when the amount of data is relatively small. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.