Abstract.We identify an important class of symmetries in constraint programming, arising from matrices of decision variables where rows and columns can be swapped. Whilst lexicographically ordering the rows (columns) breaks all the row (column) symmetries, lexicographically ordering both the rows and the columns fails to break all the compositions of the row and column symmetries. Nevertheless, our experimental results show that this is effective at dealing with these compositions of symmetries. We extend these results to cope with symmetries in any number of dimensions, with partial symmetries, and with symmetric values. Finally, we identify special cases where all compositions of the row and column symmetries can be eliminated by the addition of only a linear number of symmetry-breaking constraints.
Essence is a formal language for specifying combinatorial problems in a manner similar to natural rigorous specifications that use a mixture of natural language and discrete mathematics. Essence provides a high level of abstraction, much of which is the consequence of the provision of decision variables whose values can be combinatorial objects, such as tuples, sets, multisets, relations, partitions and functions. Essence also allows these combinatorial objects to be nested to arbitrary depth, providing for example sets of partitions, sets of sets of partitions, and so forth. Therefore, a problem that requires finding a complex combinatorial object can be specified directly by using a decision variable whose type is precisely that combinatorial object.
When solving a combinatorial problem using Constraint Programming (CP) or Satisfiability (SAT), modelling and formulation are vital and difficult tasks. Even an expert human may explore many alternatives in modelling a single problem. We make a number of contributions in the automated modelling and reformulation of constraint models. We study a range of automated reformulation techniques, finding combinations of techniques which perform particularly well together. We introduce and describe in detail a new algorithm, X-CSE, to perform Associative-Commutative Common Subexpression Elimination (AC-CSE) in constraint problems, significantly improving existing CSE techniques for associative and commutative operators such as +. We demonstrate that these reformulation techniques can be integrated in a single automated constraint modelling tool, called Savile Row, whose architecture we describe. We use Savile Row as an experimental testbed to evaluate each reformulation on a set of 50 problem classes, with 596 instances in total. Our recommended reformulations are well worthwhile even including overheads, especially on harder instances where solver time dominates. With a SAT solver we observed a geometric mean of 2.15 times speedup compared to a straightforward tailored model without recommended reformulations. Using a CP solver, we obtained a geometric mean of 5.96 times speedup for instances taking over 10 seconds to solve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.