Writing Committee for the REMAP-CAP Investigators IMPORTANCE The evidence for benefit of convalescent plasma for critically ill patients with COVID-19 is inconclusive.OBJECTIVE To determine whether convalescent plasma would improve outcomes for critically ill adults with COVID-19. DESIGN, SETTING, AND PARTICIPANTSThe ongoing Randomized, Embedded, Multifactorial, Adaptive Platform Trial for Community-Acquired Pneumonia (REMAP-CAP) enrolled and randomized 4763 adults with suspected or confirmed COVID-19 between March 9, 2020, and January 18, 2021, within at least 1 domain; 2011 critically ill adults were randomized to open-label interventions in the immunoglobulin domain at 129 sites in 4 countries. Follow-up ended on April 19, 2021. INTERVENTIONSThe immunoglobulin domain randomized participants to receive 2 units of high-titer, ABO-compatible convalescent plasma (total volume of 550 mL ± 150 mL) within 48 hours of randomization (n = 1084) or no convalescent plasma (n = 916). MAIN OUTCOMES AND MEASURESThe primary ordinal end point was organ support-free days (days alive and free of intensive care unit-based organ support) up to day 21 (range, −1 to 21 days; patients who died were assigned -1 day). The primary analysis was an adjusted bayesian cumulative logistic model. Superiority was defined as the posterior probability of an odds ratio (OR) greater than 1 (threshold for trial conclusion of superiority >99%). Futility was defined as the posterior probability of an OR less than 1.2 (threshold for trial conclusion of futility >95%). An OR greater than 1 represented improved survival, more organ support-free days, or both. The prespecified secondary outcomes included in-hospital survival; 28-day survival; 90-day survival; respiratory support-free days; cardiovascular support-free days; progression to invasive mechanical ventilation, extracorporeal mechanical oxygenation, or death; intensive care unit length of stay; hospital length of stay; World Health Organization ordinal scale score at day 14; venous thromboembolic events at 90 days; and serious adverse events. RESULTS Among the 2011 participants who were randomized (median age, 61 [IQR, 52 to 70] years and 645/1998 [32.3%] women), 1990 (99%) completed the trial. The convalescent plasma intervention was stopped after the prespecified criterion for futility was met. The median number of organ support-free days was 0 (IQR, -1 to 16) in the convalescent plasma group and 3 (IQR, -1 to 16) in the no convalescent plasma group. The in-hospital mortality rate was 37.3% (401/1075) for the convalescent plasma group and 38.4% (347/904) for the no convalescent plasma group and the median number of days alive and free of organ support was 14 (IQR, 3 to 18) and 14 (IQR, 7 to 18), respectively. The median-adjusted OR was 0.97 (95% credible interval, 0.83 to 1.15) and the posterior probability of futility (OR <1.2) was 99.4% for the convalescent plasma group compared with the no convalescent plasma group. The treatment effects were consistent across the primary outcome and the 11...
Objective: To assess neurological sequelae in patients with all grades of carbon monoxide (CO) poisoning after treatment with hyperbaric oxygen (HBO) and normobaric oxygen (NBO). Design: Randomised controlled double‐blind trial, including an extended series of neuropsychological tests and sham treatments in a multiplace hyperbaric chamber for patients treated with NBO. Setting: The multiplace hyperbaric chamber at the Alfred Hospital, a university attached quarternary referral centre in Melbourne providing the only hyperbaric service in the State of Victoria. Patients: All patients referred with CO poisoning between 1 September 1993 and 30 December 1995, irrespective of severity of poisoning. Pregnant women, children, burns victims and those refusing consent were excluded. Intervention: Daily 100‐minute treatments with 100% oxygen in a hyperbaric chamber ‐ 60 minutes at 2.8 atmospheres absolute for the HBO group and at 1.0 atmosphere absolute for the NBO group ‐ for three days (or for six days for patients who were clinically abnormal or had poor neuropsychological outcome after three treatments). Both groups received continuous high flow oxygen between treatments. Main outcome measures: Neuropsychological performance at completion of treatment, and at one month where possible. Results: More patients in the HBO group required additional treatments (28% v. 15%, P=0.01 for all patients; 35% v. 13%, P=0.001 for severely poisoned patients). HBO patients had a worse outcome in the learning test at completion of treatment (P=0.01 for all patients; P=0.005 for severely poisoned patients) and a greater number of abnormal test results at completion of treatment (P=0.02 for all patients; P=0.008 for severely poisoned patients). A greater percentage of severely poisoned patients in the HBO group had a poor outcome at completion of treatment (P=0.03). Delayed neurological sequelae were restricted to HBO patients (P=0.03). No outcome measure was worse in the NBO group. Conclusion: In this trial, in which both groups received high doses of oxygen, HBO therapy did not benefit, and may have worsened, the outcome. We cannot recommend its use in CO poisoning.
Exposure to the underwater environment for recreational or occupational purposes is increasing. Approximately 7 million divers are active worldwide and 500 000 more are training every year. Diving related illnesses are consequently an increasingly common clinical problem with over 1000 cases of decompression illness reported annually in the USA alone. Divers are exposed to a number of physiological risks as a result of the hyperbaric underwater environment including: the toxic effects of hyperbaric gases, the respiratory effects of increased gas density, drowning, hypothermia and bubble related pathophysiology. Understanding the nature of this pathophysiology provides insight into physiological systems under stress and as such may inform translational research relevant to clinical medicine. We will review current diving practice, the physics and physiology of the hyperbaric environment, and the pathophysiology and treatment of diving related diseases. We will discuss current developments in diving research and some potential translational research areas.
This study has confirmed that a significant economic burden is involved in treating necrotizing fasciitis. There is a substantial difference between the hospital costs and government funding for treating these patients in the Australian setting.
Tetrahydropyranyladriamycin (THP or pirarubicin) destroys tumors via several mechanisms; one of which involves the production of ROS that requires molecular oxygen for its generation. SMA forms stable self-assembled associated micelles with pirarubicin (SMA-pirarubicin), and confers macromolecular characteristics to pirarubicin. This micellar macromolecular drug is selectively delivered to solid tumors via the EPR effect and its preferential tumor accumulation suppresses the systemic toxicity whilst its prolonged high concentration at the site of tumor enhances its efficacy much higher compared to free pirarubicin. Administration of SMA-pirarubicin micelle under HBO can further enhance the delivery of molecular oxygen that facilitates tumor selective generation of ROS, thus augmenting its antitumor potency. In this study, we evaluated the efficacy of SMA-pirarubicin micelles either as single drug or in combination with HBO in a mouse metastatic colorectal cancer model. At or below the maximum tolerated dose, SMA-pirarubicin remarkably reduced metastatic tumor nodules and it was far more effective than free pirarubicin. The data also suggests a potential benefit of combined therapy of HBO with micellar anthracyclins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.