In rock masses where fracture flow greatly exceeds flow through the rock matrix, the matrix provides a storage porosity which needs to be considered for transient flow, and for solute transport. This paper presents a dual‐porosity, single permeability approach for evaluation of flow and transport in fractured rock. The fracture network flow approach is based on a generic matrix block similar to the method of Warren and Root (1963), applied to realistic fracture geometries. The solute transport approach is based on a probabilistic concept of matrix diffusion as a process of Brownian motion, implemented using a probabilistic particle tracking technique.
This paper discusses the prediction of fatigue response of composites using an empirical strength and stiffness degradation scheme coupled to a cumulative damage accumulation approach. The cumulative damage accumulation approach is needed to account for the non-constant stress levels that arise due to stress distributions from stiffness degradation during the fatigue loading. Degradation of strength and stiffness during fatigue loading of the composite was implemented by following the empirical model presented by Shokrieh and Lessard with some modification and correction to the non-dimensional load parameter definition. The fatigue analysis was performed using ABAQUS™ finite element software using a user-defined material subroutine UMAT developed for the material response. Implementation results were first verified for unidirectional laminate test cases and validated by predicting stress versus life (S-N) curves for several laminate coupons test simulations and residual strengths of Open Hole Tension (OHT) specimens subjected to constant amplitude fatigue loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.