It has been recently shown that various stress-inducing manipulations in isolated ventricular myocytes may lead to significant remodeling of t-tubules. Osmotic stress is one of the most common complications in various experimental and clinical settings. Therefore, this study was designed to determine the effects of a physiologically relevant type of osmotic stress, hypo-osmotic challenge, to the integrity of t-tubular system in mouse ventricular myocytes using two approaches: (1) electrophysiological measurements of membrane capacitance and inward rectifier (IK1) tail currents originating from K+ accumulation in t-tubules, and (2) confocal microscopy of fluorescent dextrans trapped in sealed t-tubules. Importantly, we found that removal of 0.6 Na (60% NaCl) hypo-osmotic solution, but not its application to myocytes, led to ~27% reduction in membrane capacitance, ~2.5-fold reduction in the amplitude of IK1 tail current and ~2-fold reduction in so-called IK1 ‘inactivation’ (due to depletion of t-tubular K+) at negative membrane potentials – all data being consistent with significant detubulation. Confocal imaging experiments also demonstrated that extracellularly applied dextrans become trapped in sealed t-tubules only upon removal of hypo-osmotic solutions, i.e. during shrinking phase, but not during initial swelling period. In light of these data, relevant previous studies, including those on EC coupling phenomena during hypo-osmotic stress, may need to be reinterpreted and the experimental design of future experiments should take into account the novel findings.
We have recently shown that sulindac, an anti-inflammatory drug, enhances the killing of cancer cells, but not normal cells, under conditions of oxidative stress, by mechanisms unrelated to its cyclooxygenase (COX) inhibition. To further study the protective effect of sulindac on cells exposed to oxidative stress, we have investigated the effect of sulindac on rat cardiac myocytes subjected to hypoxia/reoxygenation, as well as in a Langendorff model of myocardial ischemia. Low levels of sulindac could protect cardiac myocytes against cell death due to hypoxia/reoxygenation. In the Langendorff model sulindac provided significant protection against cell death, when the drug was fed to the animals before the removal of the heart for the Langendorff procedure. The results indicate that the primary protective effect of sulindac in these experiments does not involve its role as a COX inhibitor. Numerous signaling pathways have been implicated in myocardial protective mechanisms, many of which involve fluctuations in reactive oxygen species (ROS) levels. The results suggest that low levels of sulindac can induce a preconditioning response, triggered by ROS, to protect cardiac tissues against oxidative damage. Blocking of preconditioning pathways by administration of the PKC blocker chelerythrine abrogated the ischemic protection afforded by sulindac. Secondly, after feeding of sulindac, two end-effectors of preconditioning, inducible nitric oxide synthase and heat shock protein 27, were found to be markedly induced in the heart, dependent on PKC. These results suggest that sulindac may have therapeutic potential as a preconditioning agent.cardioprotection ͉ myocardial ischemia
Cardiac t-tubules are critical for efficient excitation-contraction coupling but become significantly remodeled during various stress conditions. However, the mechanisms by which t-tubule remodeling occur are poorly understood. Recently, we demonstrated that recovery of mouse ventricular myocytes after hyposmotic shock is associated with t-tubule sealing. In this study, we found that the application of Small Membrane Permeable Molecules (SMPM) such as DMSO, formamide and acetamide upon washout of hyposmotic solution significantly reduced the amount of extracellular dextran trapped within sealed t-tubules. The SMPM protection displayed sharp biphasic concentration dependence that peaks at ∼140 mM leading to >3- to 4-fold reduction in dextran trapping. Consistent with these data, detailed analysis of the effects of DMSO showed that the magnitude of normalized inward rectifier tail current (IK1,tail), an electrophysiological marker of t-tubular integrity, was increased ∼2-fold when hyposmotic stress was removed in the presence of 1% DMSO (∼140 mM). Analysis of dynamics of cardiomyocytes shrinking during resolution of hyposmotic stress revealed only minor increase in shrinking rate in the presence of 1% DMSO, and cell dimensions returned fully to prestress values in both control and DMSO groups. Application and withdrawal of 10% DMSO in the absence of preceding hyposmotic shock induced classical t-tubule sealing. This suggests that the biphasic concentration dependence originated from an increase in secondary t-tubule sealing when high SMPM concentrations are removed. Overall, the data suggest that SMPM protect against sealing of t-tubules following hyposmotic stress, likely through membrane modification and essentially independent of their osmotic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.