We discuss fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies for extracting information concerning such local order from experiments are derived with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systemsthe exactly solvable one dimensional electron gas with an impurity, and a weakly-interacting 2D electron gas. We extensively review experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies. We adduce evidence that stripe correlations are widespread in the cuprates. Finally, we compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi liquid state, and strong coupling, in which the magnetism is associated with well defined localized spins, and stripes are viewed as a form of micro-phase separation. We present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.
Using a multistep renormalization group method, we study the low-temperature phases of the interacting one-dimensional (1D) electron gas coupled to phonons. We obtain analytic expressions for the weak-coupling quantum phase boundaries of the 1D extended Holstein-Hubbard model and the 1D extended Peierls-Hubbard model for general band-filling and phonon frequency. Away from half-filling, the phase diagrams are characterized by a delicate competition between spin density wave, charge density wave, and superconducting orders. We study the dependence of the ground state on the electron-phonon (el-ph) and electron-electron (el-el) coupling strengths, the screening length, electron bandwidth, phonon frequency, doping, and type of phonon. Unlike the case in Fermi liquids, in 1D the el-ph coupling is strongly renormalized, often to stronger values. Even when the bare phonon-induced attraction is weak compared to the bare el-el repulsion, a small amount of retardation can cause the renormalized el-ph interaction to dominate the problem. We find cases in which a repulsive el-el interaction enhances the superconducting susceptibility in the presence of a retarded el-ph interaction. The spin gap and superconducting susceptibility are found to be strongly dependent on the deviation from half-filling (doping). In some cases, the superconducting susceptibility varies nonmonotonically with doping and exhibits a maximum at a particular doping. For a quasi-1D array of weakly coupled, fluctuating 1D chains, the superconducting transition temperature Tc also exhibits a maximum as a function of doping. The effect of changing the ion mass (isotope effect) on Tc is found to be largest near half-filling and to decrease rapidly with doping.
We compute the finite-temperature single-particle spectral function of a one-dimensional Luttinger liquid coupled to an optical phonon band. The calculation is performed exactly for the case in which electron-phonon coupling is purely forward scattering. We extend the results to include backward scattering with a renormalization group treatment. The dispersion contains a change in velocity at the phonon energy, qualitatively similar to the case of electron-phonon coupling in a Fermi liquid. If the backward scattering part of the the electron-phonon interaction is not too strong compared to the forward scattering part, coupling to phonons also produces a pronounced peak in the spectral function at low energies. The calculated spectral function is remarkably similar to the angle-resolved photoemission spectra of the high-temperature superconductors, including the apparent presence of "nodal quasiparticles," the presence of a "kink" in the dispersion, and the non-Fermi-liquid frequency and temperature dependencies. Although a microscopic justification has not been established for treating the electronic dynamics of the cuprates as quasi-one-dimensional, at the very least we take the quality of the comparison as evidence of the non-Fermi-liquid character of the measured spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.