We demonstrate the utility of the Raman confocal microscope to generate a spectral profile from a single microbial cell and the use of this approach to differentiate bacterial species. In general, profiles from different bacterial taxa shared similar peaks, but the relative abundances of these components varied between different species. The use of multivariate methods subsequently allowed taxa discrimination. Further investigations revealed that the single-cell spectra could be used to differentiate between growth phases of a single species, but these differences did not obscure the overall interspecies discrimination. Finally, we tested the efficacy of the method as a means to identify cells responsible for the uptake of a specific substrate. A single strain was grown in media containing incrementally varying ratios of (13)C(6) to (12)C(6) glucose, and it was found that (13)C incorporation shifted characteristic peaks to lower wavenumbers. These findings suggest that Raman microscopy has significant potential for studies requiring the taxonomic identity and functioning of single microbial cells to be determined.
The power law that describes the relationship between species richness and area size is one of the few generalizations in ecology, but recent studies show that this relationship differs for microbes. We demonstrate that the natural bacterial communities inhabiting small aquatic islands (treeholes) do indeed follow the species-area law. The result requires a re-evaluation of the current understanding of how natural microbial communities operate and implies that analogous processes structure both microbial communities and communities of larger organisms.
SummaryDespite its long-term use in bioremediation, bioaugmentation of contaminated sites with microbial cells continues to be a source of controversy within environmental microbiology. This largely results from its notoriously unreliable performance record. In this article, we argue that the unpredictable nature of the approach comes from the initial strain selection step. Up until now, this has been dictated by the search for catabolically competent microorganisms, with little or no consideration given to other essential features that are required to be functionally active and persistent in target habitats. We describe how technical advances in molecular biology and analytical chemistry, now enable assessments of the functional diversity and spatial distribution of microbial communities to be made in situ. These advances now enable microbial populations, targeted for exploitation, to be differentiated to the cell level, an advance that is bound to improve microbial selection and exploitation. We argue that this information-based approach is already proving to be more effective than the traditional 'black-box' approach of strain selection. The future perspectives and opportunities for improving selection of effective microbial strains for bioaugmentation are also discussed.
For millennia, secondary plant metabolites have antagonized microorganisms, insects and humans alike, ultimately generating a complex and dynamic mixture of facultative and obligate interactions from symbioses to pathogenicity. Secondary plant metabolites have an important role in developing the myriad of organic pollutant-degrading enzymes found in nature. The link between secondary plant metabolites and enzymatic diversity has yet to be exploited, with potential applications in fields as varied as pest management, bioremediation and fine chemical production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.