Surface rupture in the 2019 Ridgecrest, California, earthquake sequence occurred along two orthogonal cross faults and includes dominantly left-lateral and northeast-striking rupture in the Mw 6.4 foreshock and dominantly right-lateral and northwest-striking rupture in the Mw 7.1 mainshock. We present >650 field-based, surface-displacement observations for these ruptures and synthesize our results into cumulative along-strike displacement distributions. Using these data, we calculate displacement gradients and compare our results with historical strike-slip ruptures in the eastern California shear zone. For the Mw 6.4 rupture, we report 96 displacements measured along 18 km of northeast-striking rupture. Cumulative displacement curves for the rupture yield a mean left-lateral displacement of 0.3–0.5 m and maximum of 0.7–1.6 m. Net mean vertical displacement based on the difference of down-to-the-west (DTW) and down-to-the-east (DTE) displacement curves is close to zero (0.02 m DTW). The Mw 6.4 displacement distribution shows that the majority of displacement occurred southwest of the intersection with the Mw 7.1 rupture. The Mw 7.1 rupture is northwest-striking and 50 km long based on 576 field measurements. Displacement curves indicate a mean right-lateral displacement of 1.2–1.7 m and a maximum of 4.3–7.0 m. Net vertical displacement in the rupture averages 0.3 m DTW. The Mw 7.1 displacement distributions demonstrate that maximum displacement occurred along a 12-km-long portion of the fault near the Mw 7.1 epicenter, releasing 66% of the geologically based seismic moment along 24% of the total rupture length. Using our displacement distributions, we calculate kilometer-scale displacement gradients for the Mw 7.1 rupture. The steepest gradients (∼1–3 m/km) flank the 12-km-long region of maximum displacement. In contrast, gradients for the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes are <0.6 m/km. Our displacement distributions are important for understanding the influence of cross-fault rupture on Mw 6.4 and 7.1 rupture length and displacement and will facilitate comparisons with distributions generated remotely and at broader scales.
The 2015 Gorkha earthquake produced displacement on the lower half of a shallow decollement that extends 100 km south, and upward from beneath the High Himalaya and Kathmandu to where it breaks the surface to form the trace of the Himalayan Frontal Thrust (HFT), leaving unruptured the shallowest ~50 km of the decollement. To address the potential of future earthquakes along this section of the HFT, we examine structural, stratigraphic, and radiocarbon relationships in exposures produced by emplacement of trenches across the HFT where it has produced scarps in young alluvium at the mouths of major rivers at Tribeni and Bagmati. The Bagmati site is located south of Kathmandu and directly up dip from the Gorkha rupture, whereas the Tribeni site is located ~200 km to the west and outside the up dip projection of the Gorkha earthquake rupture plane. The most recent rupture at Tribeni occurred 1221-1262 AD to produce a scarp of ~7 m vertical separation. Vertical separation across the scarp at Bagmati registers ~10 m, possibly greater, and formed between 1031-1321 AD. The temporal constraints and large displacements allow the interpretation that the two sites separated by ~200 km each ruptured simultaneously, possibly during 1255 AD, the year of a historically reported earthquake that produced damage in Kathmandu. In light of geodetic data that show ~20 mm/yr of crustal shortening is occurring across the Himalayan front, the sum of observations is interpreted to suggest that the HFT extending from Tribeni to Bagmati may rupture simultaneously, that the next great earthquake near Kathmandu may rupture an area significantly greater than the section of HFT up dip from the Gorkha earthquake, and that it is prudent to consider that the HFT near Kathmandu is well along in a strain accumulation cycle prior to a great thrust earthquake, most likely much greater than occurred in 2015.
The Mw 6.4 and Mw 7.1 Ridgecrest earthquake sequence occurred on 4 and 5 July 2019 within the eastern California shear zone of southern California. Both events produced extensive surface faulting and ground deformation within Indian Wells Valley and Searles Valley. In the weeks following the earthquakes, more than six dozen scientists from government, academia, and the private sector carefully documented the surface faulting and ground-deformation features. As of December 2019, we have compiled a total of more than 6000 ground observations; approximately 1500 of these simply note the presence or absence of fault rupture or ground failure, but the remainder include detailed descriptions and other documentation, including tens of thousands of photographs. More than 1100 of these observations also include quantitative field measurements of displacement sense and magnitude. These field observations were supplemented by mapping of fault rupture and ground-deformation features directly in the field as well as by interpreting the location and extent of surface faulting and ground deformation from optical imagery and geodetic image products. We identified greater than 68 km of fault rupture produced by both earthquakes as well as numerous sites of ground deformation resulting from liquefaction or slope failure. These observations comprise a dataset that is fundamental to understanding the processes that controlled this earthquake sequence and for improving earthquake hazard estimates in the region. This article documents the types of data collected during postearthquake field investigations, the compilation effort, and the digital data products resulting from these efforts.
Fault scarps and uplifted terraces in young alluvium are frequent occurrences along the trace of the northerly dipping Himalayan frontal thrust (HFT). Generally, it was expected that the 25 April 2015 M 7.8 Gorkha earthquake of Nepal would produce fresh scarps along the fault trace. Contrary to expectation, Interferometric Synthetic Aperture Radar and aftershock studies soon indicated the rupture of the HFT was confined to the subsurface, terminating on the order of 50 km north of the trace of the HFT. We undertook a field survey along the trace of the HFT and along faults and lineaments within the Kathmandu Valley eight days after the earthquake. Our field survey confirmed the lack of surface rupture along the HFT and the mapped faults and lineaments in Kathmandu Valley. The only significant ground deformation we observed was limited to an ∼1 km-long northeast-trending fracture set in the district of Kausaltar within Kathmandu. This feature is interpreted not to be the result of tectonic displacement, but rather a localized extension along a ridge. Our survey also shows the ubiquitous presence of fallen chimneys of brick kilns along the HFT and within the Kathmandu Valley. Measurements of a small subset of fallen chimneys across the region suggest a degree of systematic fall direction of the chimneys when subdivided geographically.
The July 2019 Ridgecrest earthquakes in southeastern California were characterized as surprising by some, because only ∼35% of the rupture occurred on previously mapped faults. Employing more detailed inspection of pre-event high-resolution topography and imagery in combination with field observations, we document evidence of active faulting in the landscape along the entire fault system. Scarps, deflected drainages, and lineaments and contrasts in topography, vegetation, and ground color demonstrate previous slip on a dense network of orthogonal faults, consistent with patterns of ground surface rupture observed in 2019. Not all of these newly mapped fault strands ruptured in 2019. Outcrop-scale field observations additionally reveal tufa lineaments and sheared Quaternary deposits. Neotectonic features are commonly short (<2 km), discontinuous, and display en echelon patterns along both the M 6.4 and M 7.1 ruptures. These features are generally more prominent and better preserved outside the late Pleistocene lake basins. Fault expression may also be related to deformation style: scarps and topographic lineaments are more prevalent in areas where substantial vertical motion occurred in 2019. Where strike-slip displacement dominated in 2019, the faults are mainly expressed by less prominent tonal and vegetation features. Both the northeast- and northwest-trending active-fault systems are subparallel to regional bedrock fabrics that were established as early as ∼150 Ma, and may be reactivating these older structures. Overall, we estimate that 50%–70% (i.e., an additional 15%–35%) of the 2019 surface ruptures could have been recognized as active faults with detailed inspection of pre-earthquake data. Similar detailed mapping of potential neotectonic features could help improve seismic hazard analyses in other regions of eastern California and elsewhere that likely have distributed faulting or incompletely mapped faults. In areas where faults cannot be resolved as single throughgoing structures, we recommend a zone of potential faulting should be used as a hazard model input.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.