Sea star wasting (SSW) disease describes a condition affecting asteroids that resulted in significant Northeastern Pacific population decline following a mass mortality event in 2013. The etiology of SSW is unresolved. We hypothesized that SSW is a sequela of microbial organic matter remineralization near respiratory surfaces, one consequence of which may be limited O2 availability at the animal-water interface. Microbial assemblages inhabiting tissues and at the asteroid-water interface bore signatures of copiotroph proliferation before SSW onset, followed by the appearance of putatively facultative and strictly anaerobic taxa at the time of lesion genesis and as animals died. SSW lesions were induced in Pisaster ochraceus by enrichment with a variety of organic matter (OM) sources. These results together illustrate that depleted O2 conditions at the animal-water interface may be established by heterotrophic microbial activity in response to organic matter loading. SSW was also induced by modestly (∼39%) depleted O2 conditions in aquaria, suggesting that small perturbations in dissolved O2 may exacerbate the condition. SSW susceptibility between species was significantly and positively correlated with surface rugosity, a key determinant of diffusive boundary layer thickness. Tissues of SSW-affected individuals collected in 2013–2014 bore δ15N signatures reflecting anaerobic processes, which suggests that this phenomenon may have affected asteroids during mass mortality at the time. The impacts of enhanced microbial activity and subsequent O2 diffusion limitation may be more pronounced under higher temperatures due to lower O2 solubility, in more rugose asteroid species due to restricted hydrodynamic flow, and in larger specimens due to their lower surface area to volume ratios which affects diffusive respiratory potential.
Infections with pathogenic bacteria entering the mammary gland through the teat canal are the most common cause of mastitis in dairy cows; therefore, sustaining the integrity of the teat canal and its adjacent tissues is critical to resist infection. The ability to monitor teat tissue condition is a key prerequisite for udder health management in dairy cows. However, to date, routine assessment of teat condition is limited to cow-side visual inspection, making the evaluation a time-consuming and expensive process. Here, we demonstrate a digital teat-end condition assessment by way of deep learning. A total of 398 digital images from dairy cows' udders were collected on 2 commercial farms using a digital camera. The degree of teat-end hyperkeratosis was scored using a 4-point scale. A deep learning network from a transfer learning approach (GoogLeNet; Google Inc., Mountain View, CA) was developed to predict the teat-end condition from the digital images. Teat-end images were split into training (70%) and validation (15%) data sets to develop the network, and then evaluated on the remaining test (15%) data set. The areas under the receiver operator characteristic curves on the test data set for classification scores of normal, smooth, rough, and very rough were 0.
Sea star wasting (SSW) disease describes a condition affecting asteroids that resulted in significant Northeastern Pacific population decline following a mass mortality event in 2013. The etiology of sea star wasting is unresolved. We hypothesize that asteroid wasting is a sequela of microbial organic matter remineralization near respiratory surfaces which leads to boundary layer oxygen diffusion limitation (BLODL). Wasting lesions were induced in Pisaster ochraceus by enrichment with a variety of organic matter (OM) sources. Microbial assemblages inhabiting tissues and at the asteroid-water interface bore signatures of copiotroph proliferation before wasting onset, concomitant with and followed by the proliferation of putatively facultative and strictly anaerobic taxa. Bacterial cell abundance increased dramatically prior to wasting onset in experimental incubations. Wasting susceptibility was significantly correlated with rugosity (a key determinant of boundary layer thickness) of animal surfaces. At a semi continuously monitored field site (Langley Harbor), wasting predictably occurred at annual peak or decline in phytoplankton biomass. Finally, wasting individuals from 2013 to 2014 bore stable isotopic signatures reflecting anaerobic processes and altered C and N metabolisms. These convergent lines of evidence support our hypothesis that BLODL is associated with wasting both in contemporary SSW events and during the 2013 to 2014 SSW mass mortality event, potentially driven by phytoplankton-derived OM. The impacts of BLODL may be more pronounced under higher temperatures due to lower O2 solubility, in more rugose asteroid species due to restricted hydrodynamic flow, and in larger specimens due to their lower surface area to volume ratios which affects diffusive respiratory potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.