Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cisepoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in d 13 C and d18 O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.
High sunlight can raise plant growth rates but can potentially cause cellular damage. The likelihood of deleterious effects is lowered by a sophisticated set of photoprotective mechanisms, one of the most important being the controlled dissipation of energy from chlorophyll within photosystem II (PSII) measured as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity remains uncertain because it momentarily reduces the quantum efficiency of photosynthesis. Here we used plants overexpressing the gene encoding a central regulator of NPQ, the protein PsbS, within a major crop species (rice) to assess the effect of photoprotection at the whole canopy scale. We accounted for canopy light interception, to our knowledge for the first time in this context. We show that in comparison to wild-type plants, psbS overexpressors increased canopy radiation use efficiency and grain yield in fluctuating light, demonstrating that photoprotective mechanisms should be altered to improve rice crop productivity.
There is a need to develop rice plants with improved photosynthetic capacity and efficiency in order to enhance potential grain yield. Alterations in internal leaf morphology may be needed to underpin some of these improvements. One target is the production of a ‘Kranz-like’ anatomy, commonly considered to be required to achieve the desired levels of photosynthesis seen in C4 crops. Kranz anatomy typically has two or three mesophyll cells interspersing adjacent veins. As a first step to determining the potential for such anatomical modifications in rice leaves, a population of rice deletion mutants was analysed for alterations in vein patterning and mesophyll cells in the interveinal regions. Significant variation is demonstrated in vein arrangement and the sequential distribution of major and minor veins across the leaf width, although there is a significant correlation between the total number of veins present and the width of the leaf. Thus the potential is demonstrated for modifying rice leaf structure. Six distinct rice mutant lines, termed altered leaf morphology (alm) mutants, were analysed for the architecture of their interveinal mesophyll cell arrangement. It is shown that in these mutant lines, the distance between adjacent minor veins and adjacent minor and major veins is essentially determined by the size of the interveinal mesophyll cells rather than changes in mesophyll cell number across this region, and hence interveinal distance changes as a result of cell expansion rather than cell division. This observation will be important when developing screens for traits relevant for the introduction of Kranz anatomy into rice.This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.