SUMMARY
The genus Legionella contains more than 50 species, of which at least 24 have been associated with human infection. The best-characterized member of the genus, Legionella pneumophila, is the major causative agent of Legionnaires' disease, a severe form of acute pneumonia. L. pneumophila is an intracellular pathogen, and as part of its pathogenesis, the bacteria avoid phagolysosome fusion and replicate within alveolar macrophages and epithelial cells in a vacuole that exhibits many characteristics of the endoplasmic reticulum (ER). The formation of the unusual L. pneumophila vacuole is a feature of its interaction with the host, yet the mechanisms by which the bacteria avoid classical endosome fusion and recruit markers of the ER are incompletely understood. Here we review the factors that contribute to the ability of L. pneumophila to infect and replicate in human cells and amoebae with an emphasis on proteins that are secreted by the bacteria into the Legionella vacuole and/or the host cell. Many of these factors undermine eukaryotic trafficking and signaling pathways by acting as functional and, in some cases, structural mimics of eukaryotic proteins. We discuss the consequences of this mimicry for the biology of the infected cell and also for immune responses to L. pneumophila infection.
Macrophages can be niches for bacterial pathogens or antibacterial effector cells depending on the pathogen and signals from the immune system. Here we show that type I and II IFNs are master regulators of gene expression during Legionella pneumophila infection, and activators of an alveolar macrophage-intrinsic immune response that restricts bacterial growth during pneumonia. Quantitative mass spectrometry revealed that both IFNs substantially modify Legionella-containing vacuoles, and comparative analyses reveal distinct subsets of transcriptionally and spatially IFN-regulated proteins. Immune-responsive gene (IRG)1 is induced by IFNs in mitochondria that closely associate with Legionella-containing vacuoles, and mediates production of itaconic acid. This metabolite is bactericidal against intravacuolar L. pneumophila as well as extracellular multidrug-resistant Gram-positive and -negative bacteria. Our study explores the overall role IFNs play in inducing substantial remodeling of bacterial vacuoles and in stimulating production of IRG1-derived itaconic acid which targets intravacuolar pathogens. IRG1 or its product itaconic acid might be therapeutically targetable to fight intracellular and drug-resistant bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.