We describe polarization controlled two-color coherence photon echo studies of the reaction center complex from a purple bacterium Rhodobacter sphaeroides. Long-lived oscillatory signals that persist up to 2 ps are observed in neutral, oxidized, and mutant (lacking the special pair) reaction centers, for both (0°,0°,0°,0°) and (45°,-45°,90°,0°) polarization sequences. We show that the long-lived signals arise via vibronic coupling of the bacteriopheophytin (H) and accessory bacteriochlorophyll (B) pigments that leads to vibrational wavepackets in the B ground electronic state. Fourier analysis of the data suggests that the 685 cm(-1) mode of B may play a key role in the H to B energy transfer.
We quantitatively analyze multiple hydrogen bonds in mixtures of two monomers: urethane dimethacrylate (UDMA) and triethylene glycol-divinylbenzyl ether (TEG-DVBE). The carbonyl stretching band in infrared (IR) absorption spectra is deconvoluted into free and hydrogen-bonded carbonyl groups. The amounts of the sub-components are determined for 21 mixture compositions and initially analyzed using a simple stoichiometric model (based on one dominant hydrogen acceptor group per monomer species) for the equilibrium state of hydrogen bond formation. However, our in-depth stoichiometric analysis suggests that at least two UDMA acceptor groups (carbonyl and alkoxy oxygens) and one TEG-DVBE acceptor group (ether oxygen) contribute to intermolecular hydrogen bonding interactions. This finding is further supported by a quantitative analysis of the hydrogen bonding effect on the N-H stretching band.Moreover, the equilibrium constants of these hydrogen bond formations confirm that the interassociation between UDMA and TEG-DVBE is non-negligible in comparison to the UDMA selfassociations. Such quantitative information on intermolecular interactions provides insight into the effect of hydrogen bonding on the copolymerization kinetics of these monomer mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.