We are all faced with uncertainty about the future, but we can get the measure of some uncertainties in terms of probabilities. Probabilities are notoriously difficult to communicate effectively to lay audiences, and in this review we examine current practice for communicating uncertainties visually, using examples drawn from sport, weather, climate, health, economics, and politics. Despite the burgeoning interest in infographics, there is limited experimental evidence on how different types of visualizations are processed and understood, although the effectiveness of some graphics clearly depends on the relative numeracy of an audience. Fortunately, it is increasingly easy to present data in the form of interactive visualizations and in multiple types of representation that can be adjusted to user needs and capabilities. Nonetheless, communicating deeper uncertainties resulting from incomplete or disputed knowledge--or from essential indeterminacy about the future--remains a challenge.
Reversibility is a thread woven through many branches of mathematics. It arises in dynamics, in systems that admit a time-reversal symmetry, and in group theory where the reversible group elements are those that are conjugate to their inverses. However, the lack of a lingua franca for discussing reversibility means that researchers who encounter the concept may be unaware of related work in other fields. This text is the first to make reversibility the focus of attention. The authors fix standard notation and terminology, establish the basic common principles, and illustrate the impact of reversibility in such diverse areas as group theory, differential and analytic geometry, number theory, complex analysis and approximation theory. As well as showing connections between different fields, the authors' viewpoint reveals many open questions, making this book ideal for graduate students and researchers. The exposition is accessible to readers at the advanced undergraduate level and above.
Motivated by a problem on the dynamics of compositions of plane hyperbolic isometries, we prove several fundamental results on semigroups of isometries, thought of as real Möbius transformations. We define a semigroup $S$ of Möbius transformations to be semidiscrete if the identity map is not an accumulation point of $S$. We say that $S$ is inverse free if it does not contain the identity element. One of our main results states that if $S$ is a semigroup generated by some finite collection $\mathcal{F}$ of Möbius transformations, then $S$ is semidiscrete and inverse free if and only if every sequence of the form $F_n=f_1\dotsb f_n$, where $f_n\in \mathcal{F}$, converges pointwise on the upper half-plane to a point on the ideal boundary, where convergence is with respect to the chordal metric on the extended complex plane. We fully classify all two-generator semidiscrete semigroups and include a version of Jørgensen’s inequality for semigroups. We also prove theorems that have familiar counterparts in the theory of Fuchsian groups. For instance, we prove that every semigroup is one of four standard types: elementary, semidiscrete, dense in the Möbius group, or composed of transformations that fix some nontrivial subinterval of the extended real line. As a consequence of this theorem, we prove that, with certain minor exceptions, a finitely generated semigroup $S$ is semidiscrete if and only if every two-generator semigroup contained in $S$ is semidiscrete. After this we examine the relationship between the size of the “group part” of a semigroup and the intersection of its forward and backward limit sets. In particular, we prove that if $S$ is a finitely generated nonelementary semigroup, then $S$ is a group if and only if its two limit sets are equal. We finish by applying some of our methods to address an open question of Yoccoz.
Abstract. We prove that if G is a finite simple group of Lie type and S a subset of G of size at least two then G is a product of at most c log |G|/ log |S| conjugates of S, where c depends only on the Lie rank of G. This confirms a conjecture of Liebeck, Nikolov and Shalev in the case of families of simple groups of bounded rank. We also obtain various related results about products of conjugates of a set within a group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.