Horsetail (Equisetum arvense) plants grew healthily for 10 weeks under both Si-deficient and Si-replete conditions. After 10 weeks, plants grown under Si-deficient conditions succumbed to fungal infection. We have used NanoSIMS and fluorescence microscopy to investigate silica deposition in the tissues of these plants. Horsetail grown under Si-deficient conditions did not deposit identifiable amounts of silica in their tissues. Plants grown under Si-replete conditions accumulated silica throughout their tissues and especially in the epidermis of the outer side of the leaf and the furrow region of the stem where it was continuous and often, as a double layer suggestive of a barrier function. We have previously shown, both in vivo (in horsetail and thale cress) and in vitro (using an undersaturated solution of Si(OH)), that callose is a "catalyst" of plant silica deposition. Here we support this finding by comparing the deposition of silica to that of callose and by showing that they are co-localized. We propose the existence of a synergistic mechanical protection by callose and silica against pathogens in horsetail, whereby the induction of callose synthesis and deposition is the first, biochemical line of defence and callose-induced precipitation of silica is the second, adventitious mechanical barrier.
The cell wall polymer callose catalyses the formation of silica in vitro and is heavily implicated in biological silicification in Equisetum (horsetail) and Arabidopsis (thale cress) in vivo. Callose, a β-1,3-glucan, is an ideal partner for silicification, because its amorphous structure and ephemeral nature provide suitable microenvironments to support the condensation of silicic acid into silica. Herein, using scanning electron microscopy, immunohistochemistry and fluorescence, we provide further evidence of the cooperative nature of callose and silica in biological silicification in rice, an important crop plant and known silica accumulator. These new data along with recently published research enable us to propose a model to describe the intracellular events that together determine callose-driven biological silicification.
Silicon is a non-essential element for plants and is available in biota as silicic acid. Its presence has been associated with a general improvement of plant vigour and response to exogenous stresses. Plants accumulate silicon in their tissues as amorphous silica and cell walls are preferential sites. While several papers have been published on the mitigatory effects that silicon has on plants under stress, there has been less research on imaging silicon in plant tissues. Imaging offers important complementary results to molecular data, since it provides spatial information. Herein, the focus is on histochemistry coupled to optical microscopy, fluorescence and scanning electron microscopy of microwave acid extracted plant silica, techniques based on particle-induced X-ray emission, X-ray fluorescence spectrometry and mass spectrometry imaging (NanoSIMS). Sample preparation procedures will not be discussed in detail, as several reviews have already treated this subject extensively. We focus instead on the information that each technique provides by offering, for each imaging approach, examples from both silicifiers (giant horsetail and rice) and non-accumulators (Cannabis sativa L.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.