ArticleWe present a detailed account of the GW space-time method. The method increases the size of systems whose electronic structure can be studied with a computational implementation of Hedin's GW approximation. At the heart of the method is a representation of the Green's function G and the screened Coulomb interaction W in the real-space and imaginary-time domain, which allows a more efficient computation of the self-energy approximation Σ = iGW . For intermediate steps we freely change between representations in real and reciprocal space on the one hand, and imaginary time and imaginary energy on the other, using fast Fourier transforms. The power of the method is demonstrated using the example of Si with artificially increased unit cell sizes. keywords: electronic structure, quasiparticle energies, selfenergy calculations, GW approximation 71.15. Th,79.60.Jv
We describe the following new features which significantly enhance the power of the recently developed real-space imaginary-time GW scheme (Rieger et al., Comp. Phys. Commun. 117, 211 (1999)) for the calculation of self-energies and related quantities of solids: (i) to fit the smoothly decaying time/energy tails of the dynamically screened Coulomb interaction and other quantities to model functions, treating only the remaining time/energy region close to zero numerically and performing the Fourier transformation from time to energy and vice versa by a combination of analytic integration of the tails and Gauss-Legendre quadrature of the remaining part and (ii) to accelerate the convergence of the band sum in the calculation of the Green's function by replacing higher unoccupied eigenstates by free electron states (plane waves). These improvements make the calculation of larger systems (surfaces, clusters, defects etc.) accessible. 71.15.Th,
We study the behaviour of total-energy supercell calculations for dipolar molecules and charged clusters. Using a cutoff Coulomb interaction within the framework of a plane-wave basis set formalism, with all other aspects of the method (pseudopotentials, basis set, exchange-correlation functional) unchanged, we are able to assess directly the interaction effects present in the supercell technique. We find that the supercell method gives structures and energies in almost total agreement with the results of calculations for finite systems, even for molecules with large dipole moments. We also show that the performance of finite-grid calculations can be improved by allowing a degree of aliasing in the Hartree energy, and by using a reciprocal space definition of the cutoff Coulomb interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.