An experimental study on drag-reduction phenomenon in dispersed oil-water flow has been performed in a 26-mm-i.d. Twelve meter long horizontal glass pipe. The flow was characterized using a novel wire-mesh sensor based on capacitance measurements and high-speed video recording. New two-phase pressure gradient, volume fraction, and phase distribution data have been used in the analysis. Drag reduction and slip ratio were detected at oil volume fractions between 10 and 45% and high mixture Reynolds numbers, and with water as the dominant phase. Phase-fraction distribution diagrams and crosssectional imaging of the flow suggested the presence of a higher amount of water near to the pipe wall. Based on that, a phenomenology for explaining drag reduction in dispersed flow in a flow situation where slip ratio is significant is proposed. A simple phenomenological model is developed and the agreement between model predictions and data, including data from the literature, is encouraging.
In this paper, a novel wire-mesh sensor based on permittivity (capacitance) measurements is applied to generate images of the phase fraction distribution and investigate the flow of viscous oil and water in a horizontal pipe. Phase fraction values were calculated from the raw data delivered by the wire-mesh sensor using different mixture permittivity models. Furthermore, these data were validated against quick-closing valve measurements. Investigated flow patterns were dispersion of oil in water (Do/w) and dispersion of oil in water and water in oil (Do/w&w/o). The Maxwell–Garnett mixing model is better suited for Dw/o and the logarithmic model for Do/w&w/o flow pattern. Images of the time-averaged cross-sectional oil fraction distribution along with axial slice images were used to visualize and disclose some details of the flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.