Co-infection of Mycobacterium tuberculosis and Paracoccidioides brasiliensis, present in 20% in Latin America, is a public health problem due to a lack of adequate diagnosis. These microorganisms are capable of forming biofilms, mainly in immunocompromised patients, which can lead to death due to the lack of effective treatment for both diseases. The present research aims to show for the first time the formation of mixed biofilms of M. tuberculosis and P. brasiliensis (Pb18) in vitro, as well as to evaluate the action of 3’hydroxychalcone (3’chalc) -loaded nanoemulsion (NE) (NE3’chalc) against monospecies and mixed biofilms, the formation of mixed biofilms of M. tuberculosis H37Rv (ATCC 27294), 40Rv (clinical strains) and P. brasiliensis (Pb18) (ATCC 32069), and the first condition of formation (H37Rv +Pb18) and (40Rv + Pb18) and second condition of formation (Pb18 + H37Rv) with 45 days of total formation time under both conditions. The results of mixed biofilms (H37Rv + Pb18) and (40Rv + Pb18), showed an organized network of M. tuberculosis bacilli in which P. brasiliensis yeasts are connected with a highly extracellular polysaccharide matrix. The (Pb18 + H37Rv) showed a dense biofilm with an apparent predominance of P. brasiliensis and fragments of M. tuberculosis. PCR assays confirmed the presence of the microorganisms involved in this formation. The characterization of NE and NE3’chalc displayed sizes from 145.00 ± 1.05 and 151.25 ± 0.60, a polydispersity index (PDI) from 0.20± 0.01 to 0.16± 0.01, and zeta potential -58.20 ± 0.92 mV and -56.10 ± 0.71 mV, respectively. The atomic force microscopy (AFM) results showed lamellar structures characteristic of NE. The minimum inhibitory concentration (MIC) values of 3’hidroxychalcone (3’chalc) range from 0.97- 7.8 µg/mL and NE3’chalc from 0.24 - 3.9 µg/mL improved the antibacterial activity when compared with 3’chalc-free, no cytotoxicity. Antibiofilm assays proved the efficacy of 3’chalc-free incorporation in NE. These findings contribute to a greater understanding of the formation of M. tuberculosis and P. brasiliensis in the mixed biofilm. In addition, the findings present a new possible NE3’chalc treatment alternative for the mixed biofilms of these microorganisms, with a high degree of relevance due to the lack of other treatments for these comorbidities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.