Astrocyte communication is typically studied by two-dimensional calcium ion (Ca) imaging, but this method has not yielded conclusive data on the role of astrocytes in synaptic and vascular function. We developed a three-dimensional two-photon imaging approach and studied Ca dynamics in entire astrocyte volumes, including during axon-astrocyte interactions. In both awake mice and brain slices, we found that Ca activity in an individual astrocyte is scattered throughout the cell, largely compartmented between regions, preponderantly local within regions, and heterogeneously distributed regionally and locally. Processes and endfeet displayed frequent fast activity, whereas the soma was infrequently active. In awake mice, activity was higher than in brain slices, particularly in endfeet and processes, and displayed occasional multifocal cellwide events. Astrocytes responded locally to minimal axonal firing with time-correlated Ca spots.
Astrocyte Ca(2+) signalling has been proposed to link neuronal information in different spatial-temporal dimensions to achieve a higher level of brain integration. However, some discrepancies in the results of recent studies challenge this view and highlight key insufficiencies in our current understanding. In parallel, new experimental approaches that enable the study of astrocyte physiology at higher spatial-temporal resolution in intact brain preparations are beginning to reveal an unexpected level of compartmentalization and sophistication in astrocytic Ca(2+) dynamics. This newly revealed complexity needs to be attentively considered in order to understand how astrocytes may contribute to brain information processing.
Astrocytes are highly complex cells with many emerging putative roles in brain function. Of these, gliotransmission (active information transfer from glia to neurons) has probably the widest implications on our understanding of how the brain works: do astrocytes really contribute to information processing within the neural circuitry? "Positive evidence" for this stems from work of multiple laboratories reporting many examples of modulatory chemical signaling from astrocytes to neurons in the timeframe of hundreds of milliseconds to several minutes. This signaling involves, but is not limited to, Ca-dependent vesicular transmitter release, and results in a variety of regulatory effects at synapses in many circuits that are abolished by preventing Ca elevations or blocking exocytosis selectively in astrocytes. In striking contradiction, methodologically advanced studies by a few laboratories produced "negative evidence," triggering a heated debate on the actual existence and properties of gliotransmission. In this context, a skeptics' camp arose, eager to dismiss the whole positive evidence based on a number of assumptions behind the negative data, such as the following: (1) deleting a single Ca release pathway (IP3R2) removes all the sources for Ca-dependent gliotransmission; (2) stimulating a transgenically expressed Gq-GPCR (MrgA1) mimics the physiological Ca signaling underlying gliotransmitter release; (3) age-dependent downregulation of an endogenous GPCR (mGluR5) questions gliotransmitter release in adulthood; and (4) failure by transcriptome analysis to detect vGluts or canonical synaptic SNAREs in astrocytes proves inexistence/functional irrelevance of vesicular gliotransmitter release. We here discuss how the above assumptions are likely wrong and oversimplistic. In light of the most recent literature, we argue that gliotransmission is a more complex phenomenon than originally thought, possibly consisting of multiple forms and signaling processes, whose correct study and understanding require more sophisticated tools and finer scientific experiments than done until today. Under this perspective, the opposing camps can be reconciled and the field moved forward. Along the path, a more cautious mindset and an attitude to open discussion and mutual respect between opponent laboratories will be good companions..
Changes in emotional state are known to alter neuronal excitability and can modify learning and memory formation. Such experience–dependent neuronal plasticity can be long-lasting and is thought to involve the regulation of gene transcription. Here we show that a single fear-inducing stimulus increases GluR2 mRNA abundance and promotes synaptic incorporation of GluR2-containing AMPA receptors (AMPARs) in mouse cerebellar stellate cells. The switch in synaptic AMPAR phenotype is mediated by noradrenaline and action potential prolongation. The subsequent rise in intracellular Ca2+ and activation of Ca2+-sensitive ERK /MAPK signaling trigger new GluR2 gene transcription and a switch in the synaptic AMPAR phenotype from GluR2-lacking, Ca2+-permeable, to GluR2-containing Ca2+-impermeable receptors on the order of hours. The change in glutamate receptor phenotype alters synaptic efficacy in cerebellar stellate cells. Thus, a single fear-inducing stimulus can induce a long-term change in synaptic receptor phenotype and may alter the activity of an inhibitory neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.