The shapes of trees are complex and fractal-like, and they have a set of physical, mechanical and biological functions. The relation between them always draws attention of human beings throughout history and, focusing on the relation between shape and structural strength, architects have designed a number of treelike structures, referred as dendriforms. The replication and adoption of the treelike patterns for constructing architectural structures have been varied in different time periods based on the existing and advanced knowledge and available technologies. This paper, by briefly discussing the biological functions and the mechanical properties of trees with regard to their shapes, overviews and investigates the chronological evolution and advancements of dendriform and arboreal structures in architecture referring to some important historical as well as contemporary examples.
The purpose of this study is to apply the notion of fractal geometry in designing structural roof trusses. Fractal geometry, commonly characterized by the features of recursive self-similarity, is considered as a rule-based geometric system that can be generated by using the process of the Iterated Function System (IFS). Lattice configurations of conventional trusses generally show some extend of 'self-similarity' features that loosely and sometimes closely resemble with the properties of fractal shapes. The typical configurations of these regular trusses are strategically designed to provide adequate strength and stability to the structures for carrying enough vertical and wind loads. This paper, using the Iterated Function System based on Barnsely's contraction mapping as a generative design method, proposes a new family of truss designs that follow the concept of fractal geometry. The Hausdorff dimensions and the Box Counting dimensions are evaluated to measure the fractality and detailness of the lattices of proposed fractal-based trusses. It also briefly investigates their mechanical properties for analyzing their practical feasibility in construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.