The blood redox status of child athletes is compared with that of age-matched untrained individuals. In the present study, 17 swimmers (10.1 +/- 1.6 years) and 12 non-athletes (9.9 +/- 1.1 years) participated. Reduced glutathione (GSH) was lower by 37% in swimmers compared to non-athletes (P < 0.01), oxidized glutathione (GSSG) was not different and their ratio (GSH/GSSG) was lower by 43% in swimmers compared to non-athletes (P < 0.01). Thiobarbituric acid-reactive substances concentration was higher by 25% in swimmers compared to controls. Catalase exhibited a strong trend toward lower levels in swimmers (P = 0.08). Finally, total antioxidant capacity was found lower by 28% in swimmers compared to controls (P < 0.05). In conclusion, we report that children participating in swimming training exhibit increased oxidative stress and less antioxidant capacity compared to untrained counterparts and suggest that children may be more susceptible to oxidative stress induced by chronic exercise.
G6PD-deficient individuals are able to exercise until exhaustion without higher oxidative stress compared with non-G6PD-deficient individuals. Exercise duration is an important determinant of the magnitude of exercise-induced changes for GSH, GSSG, and GSH/GSSG, but not for TBARS, protein carbonyls, catalase activity, or TAC.
The correlation between the natural levels of glutathione S-transferase (GST) and the tolerance to the organophosphorus insecticides parathion-methyl and paraoxon-methyl, as well as the interaction of affinity-purified enzyme and the insecticides were investigated in order to collect further information on the role of the glutathione S-transferase system as a mechanism of defence against insecticides in insects. The studies were carried out on the larvae and pupae of the coleopteran Tenebrio molitor L, which exhibit varying natural levels of GST activity. Stage-dependent susceptibility of the insect against insecticides was observed during the first 24 h. However, 48 h after treatment, the KD50 value increased significantly due to the recovery of some individuals. Simultaneous injection of insecticide with compounds which inhibit GST activity in vitro caused an alteration in susceptibility of insects 24 or 48 h post-treatment, depending on stage and insecticide used. Inhibition studies combined with competitive fluorescence spectroscopy revealed that the insecticides probably bind to the active site of the enzyme, thus inhibiting its activity towards 1-chloro-2,4-dinitrobenzene in a competitive manner. High-performance liquid chromatography and gas chromatography revealed that T molitor GST catalyses the conjugation of the insecticides studied to a reduced form of glutathione (GSH). From the above experimental results, it is considered that GST offers a protection against the organophosphorus insecticides studied by active site binding and subsequent conjugation with GSH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.