The aim of this study was to create and test a new mice 3D-voxel phantom named DM_BRA for mice and human first-estimation radiopharmaceutical dosimetry. Previously, the article reviews the state-ofart in animal model development. Images from Digimouse CT database were used in the segmentation and on the generation of the voxelized phantom. Simulations for validation of the DM_BRA model was performed at 0.015, 0.1, 0.5, 1 and 4 MeV photons with heart-source. Specific Absorbed Fractions (SAF) data were compared with literature data. The organ masses of DM_BRA correlated well with existing models based on the same dataset; however, few small organ masses hold significant variations. The SAF data in most simulated cases were statistically equal to a significant level of 0.01 to the reference data.Uniterms: Dosimetry/assay. Mouse phantom/tests. MCNPx Monte Carlo code Computational studies.
A multiplex PCR technique for detection of Brucella spp. in samples of bacterial suspension was validated as a complementary tool in the diagnosis of the disease. This technique allows the characterization of the agent without performing
Seneca Valley virus (SVV) is a non‐enveloped RNA virus and the only member of the Senecavirus A (SVA) species, in the Senecavirus genus, Picornaviridae family. SVV infection causes vesicular lesions in the oral cavity, snout and hooves of pigs. This infection is clinically indistinguishable from trade‐restrictions‐related diseases such as foot‐and‐mouth disease. Other clinical manifestations include diarrhoea, anorexia, lethargy, neurological signs and mortality in piglets during their first week of age. Before this study, Chile was considered free of vesicular diseases of swine, including SVV. In April 2022, a suspected case of vesicular disease in a swine farm was reported in Chile. The SVV was confirmed and other vesicular diseases were ruled out. An epidemiological investigation and phylogenetic analyses were performed to identify the origin and extent of the outbreak. Three hundred ninety‐five samples from 44 swine farms were collected, including faeces (208), oral fluid (28), processing fluid (14), fresh semen (61), environmental samples (80) and tissue from lesions (4) for real‐time RT‐PCR detection. Until June 2022, the SVV has been detected in 16 out of 44 farms, all epidemiologically related to the index farm. The closest phylogenetic relationship of the Chilean SVV strain is with viruses collected from swine in California in 2017. The direct cause of the SVV introduction has not yet been identified; however, the phylogenetic analyses suggest the USA as the most likely source. Since the virus remains active in the environment, transmission by fomites such as contaminated feed cannot be discarded. Further studies are needed to determine the risk of the introduction of novel SVV and other transboundary swine pathogens to Chile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.