This article examines the ways in which mainstream pornography positions sexual violence as a normative sexual script by analysing the video titles found on the landing pages of the three most popular pornography websites in the United Kingdom. The study draws on the largest research sample of online pornographic content to date and is unique in its focus on the content immediately advertised to a new user. We found that one in eight titles shown to first-time users on the first page of mainstream porn sites describe sexual activity that constitutes sexual violence. Our findings raise serious questions about the extent of criminal material easily and freely available on mainstream pornography websites and the efficacy of current regulatory mechanisms.
Graph embeddings have become a key and widely used technique within the field of graph mining, proving to be successful across a broad range of domains including social, citation, transportation and biological. Graph embedding techniques aim to automatically create a low-dimensional representation of a given graph, which captures key structural elements in the resulting embedding space. However, to date, there has been little work exploring exactly which topological structures are being learned in the embeddings process. In this paper, we investigate if graph embeddings are approximating something analogous with traditional vertex level graph features. If such a relationship can be found, it could be used to provide a theoretical insight into how graph embedding approaches function. We perform this investigation by predicting known topological features, using supervised and unsupervised methods, directly from the embedding space. If a mapping between the embeddings and topological features can be found, then we argue that the structural information encapsulated by the features is represented in the embedding space. To explore this, we present extensive experimental evaluation from five stateof-the-art unsupervised graph embedding techniques, across a range of empirical graph datasets, measuring a selection of topological features. We demonstrate that several topological features are indeed being approximated by the embedding space, allowing key insight into how graph embeddings create good representations.
High-Performance Computing (HPC) and the ability to process large amounts of data are of paramount importance for UK business and economy as outlined by Rt Hon David Willetts MP at the HPC and Big Data conference in February 2014. However there is a shortage of skills and available training in HPC to prepare and expand the workforce for the HPC and Big Data research and development. Currently, HPC skills are acquired mainly by students and staff taking part in HPC-related research projects, MSc courses, and at the dedicated training centres such as Edinburgh Universitys EPCC. There are few UK universities teaching the HPC, Clusters and Grid Computing courses at the undergraduate level. To address the issue of skills shortages in the HPC it is essential to provide teaching and training as part of both postgraduate and undergraduate courses. The design and development of such courses is challenging since the technologies and software in the fields of large scale distributed systems such as Cluster, Cloud and Grid computing are undergoing continuous change. The students completing the HPC courses should be proficient in these evolving technologies and equipped with practical and theoretical skills for future jobs in this fast developing area.In this paper we present our experience in developing the HPC, Cluster and Grid modules including a review of existing HPC courses offered at the UK universities. The topics covered in the modules are described, as well as the coursework project based on practical laboratory work. We conclude with an evaluation based on our experience over the last ten years in developing and delivering the HPC modules on the undergraduate courses, with suggestions for future work.
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Abstract-The classification of graphs is a key challenge within scientific fields using graphs to represent data and is an active area of research. Graph classification can be critical in identifying and labelling unknown graphs within a dataset and has seen application across many scientific fields. Graph classification poses two distinct problems: the classification of elements within a graph and the classification of the entire graph. Whilst there is considerable work on the first problem, the efficient and accurate classification of massive graphs into one or more classes has, thus far, received less attention.In this paper we propose the Deep Topology Classification (DTC) approach for global graph classification. DTC extracts both global and vertex level topological features from a graph to create a highly discriminate representation in feature space. A deep feed-forward neural network is designed and trained to classify these graph feature vectors. This approach is shown to be over 99% accurate at discerning graph classes over two datasets. Additionally, it is shown more accurate than current state of the art approaches both in binary and multi-class graph classification tasks.
Graphs are a commonly used construct for representing relationships between elements in complex high dimensional datasets. Many real-world phenomenon are dynamic in nature, meaning that any graph used to represent them is inherently temporal. However, many of the machine learning models designed to capture knowledge about the structure of these graphs ignore this rich temporal information when creating representations of the graph. This results in models which do not perform well when used to make predictions about the future state of the graph -especially when the delta between time stamps is not small. In this work, we explore a novel training procedure and an associated unsupervised model which creates graph representations optimised to predict the future state of the graph. We make use of graph convolutional neural networks to encode the graph into a latent representation, which we then use to train our temporal offset reconstruction method, inspired by auto-encoders, to predict a later time point -multiple time steps into the future. Using our method, we demonstrate superior performance for the task of future link prediction compared with none-temporal stateof-the-art baselines. We show our approach to be capable of outperforming non-temporal baselines by 38% on a real world dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.