This paper investigates the influence of the forebody of a projectile-shaped model without appendages and propulsion system in a submerged condition. The commercial steady RANS code, ANSYS Fluent, was used to conduct the simulations, and the forebody was varied based on the Hull Envelope equation. From the results, the model with nf = 2.75 was the optimum design according to the bow efficiency coefficient. However, the model with a blunt form (nf = 1) produced the lowest drag because it had the least wet surface area. For models with high nf, a high accelerating flow led to a low-pressure condition after the impact of the fluid on the fore end. This soaring pressure difference caused a flow separation, and therefore the fullness of the forebody affected the fluid flow around the body: the alteration of pressure, the flow speed, and friction as the primary component of resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.