Purpose. Representation in a generalized form of the conducted research on the development of technology for heap leaching of gold-bearing tailings at the Vasilkovsky GOK (Altyntau Kokshetau), which can be used to recover gold from technogenic deposits in Kazakhstan. Methods. The research on the gold recovery from the ore beneficiation tailings at the Vasilkovsky deposit is conducted using direct cyanidation. Experiments are performed in open heat-resistant beakers equipped with a mechanical agitator. The preparation of the material for cyanidation consists of the following operations, such as grinding, water washing and alkaline treatment followed by cyanidation. The optimal cyanidation parameters are determined by performing a series of experiments with a change in one parameter at a constant value of others. After the optimal process duration is determined, a series of experiments are conducted with a change in the solids content in the pulp of 20, 25, 33, 50 and 100%. The concentration of cyanide in the solution is 0.1-1.0 g/dm3. The concentration of sodium thiosulphate in the cyanide solution is 0.5-5.0 g/dm3. The process temperature varies within 20, 30, and 40°С. The content of the nutrient medium is the sodium thiosulphate for the used culture T10. Findings. It has been determined that with an increase in the solids content in the pulp, the degree of gold recovery from tai-lings increases, reaching a maximum of 97.5%, with a ratio of (solid : liquid) S:L = 1:1. When the solids content in the pulp is below 50%, a longer agitation leaching of the pulp is required to achieve a recovery of at least 85-90%, which, in turn, leads to high operating costs. Originality. For the first time it has been found that the optimal solids content for maximum gold recovery in the pulp can be considered 50% (or S:L = 1:1). Practical implications. Increasing the solids content in the pulp contributes to the duration of the solvent contact with the ore mass, which allows the use of less concentrated solutions of the leaching agent.
Purpose. To study gold-bearing ores subjected to heap leaching technology to identify both free gold particles, as well as gold in aggregates and adhesions, which makes it possible to obtain data on the distribution of gold by its occurrence forms. Methodolgy. Leaching process studies are conducted at the laboratory setup of the Institute of Metallurgy and Ore Beneficiation of the Ministry of Education and Science of the Republic of Kazakhstan. The gold particles are studied using an AxioScope A1 optical microscope on the polished thin section surface. The sample materials are taken from the heap leaching site of the Vasilkovsky gold ore deposit. Findings. As a result of a microscopic test of a sample taken from the heap leaching site, ultrafine-dispersed and finely-dispersed gold particles have been found both in free form and in aggregates with waste rock and arsenical pyrite, as well as the fact of Au particles adhesions, accumulated on a grain of the host waste rock. The size class of detected Au particles varies from 0.35 to 9.5 m. Originality. For the first time, according to the samples of gold-bearing ores of the Vasilkovsky gold ore deposit, a pattern of the gold distribution according to the forms of its occurrence has been revealed. Practical value. The data obtained as a result of the research make it possible to predict the distribution of the gold form occurrence in other areas of the deposit. This can greatly simplify the conditions for its development, as well as adjust the technological process of leaching the gold-bearing ores and the main technological parameters of the heap leaching process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.