Chemical and electrocoagulation are widely used coagulation methods employed in water and wastewater treatment. Both coagulation processes are effective in removing a wide range of impurities which include dissolved organic matter in form of chemical and biological oxygen demand, pathogens, oils, and colloidal particles as well as heavy metals. The present review has revealed that the mode of action of both coagulation methods is based on charge neutralization and floc formation. The effectiveness of both coagulation techniques depend on factors such as pH, coagulation dose, coagulant type, current density, applied voltage, water and wastewater type, type of electrode, as well as size and number of electrodes. The commonly used chemical coagulants are inorganic coagulants based on aluminum and iron salts. However, there have been considerable successes in the development of pre-hydrolyzed inorganic coagulants which have the added advantage over traditional inorganic coagulants in that they function well over a wide range of pH and water temperatures. Electrocoagulation has been proposed as an alternative method to chemical coagulation because it is environmental friendly and cheap to operate. Nonetheless, most researchers are of the opinion that there are still some uncertainties regarding the understanding of its optimal performance and design mechanism.
The removal of heavy metals (HMs) in sewage sludge (SS) is important since sludge is often disposed or applied on farmland to enhance soil fertility. The present study reviewed two conceptual approaches (chemical and biological leaching) of removing HMs present in SS. In the chemical leaching method, traditional acid treatment together with novel methods such as aeration, complexation and sequential extraction procedure have been reviewed extensively. Certain factors influence the removal of HMs in SS. These factors include; pH, leaching agent, redox potential, and contact time. Nitric acid (HNO3), hydrochloric acid (HCl), sulphuric acid (H2SO4), phosphoric acid (H3PO4), ethylenediamine tetraacetic acid (EDTA), as well as Thiobacillus thiooxidans and Thiobacillus ferrooxidans are the most widely studied leaching agents and substrates involved in the chemical and bioleaching processes. However, the bioleaching process has been proposed as a safe, efficient, economical, environmental friendly method to remove HMs in SS due to its simplicity, high yield of metal extraction, low acid consumption, and low sludge solids concentration. Nevertheless, the present review has noted that most researchers are of the opinion that more studies are needed in the bioleaching method in order to enhance its commercial attraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.